cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296991 Numbers k such that k^2 divides tau(k), where tau(k) = A000594(k) is Ramanujan's tau function.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 21, 24, 27, 32, 36, 40, 42, 48, 54, 64, 72, 81, 84, 96, 108, 120, 128, 135, 144, 162, 168, 189, 192, 216, 243, 256, 270, 280, 288, 324, 336, 360, 378, 384, 432, 448, 486, 512, 540, 576, 640, 648, 672, 729, 756, 768, 828, 840, 864
Offset: 1

Views

Author

Seiichi Manyama, Dec 22 2017

Keywords

Comments

2^k is a term for k >= 0.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[RamanujanTau@n, n^2] == 0; Select[Range@875, fQ] (* Robert G. Wilson v, Dec 23 2017 *)
  • PARI
    is(n) = Mod(ramanujantau(n), n^2)==0 \\ Felix Fröhlich, Dec 24 2017
    
  • Python
    from itertools import count, islice
    from sympy import divisor_sigma
    def A296991_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: not -24*((m:=n+1>>1)**2*(0 if n&1 else m*(35*m - 52*n)*divisor_sigma(m)**2)+sum(i**3*(70*i - 140*n)*divisor_sigma(i)*divisor_sigma(n-i) for i in range(1,m))) % n**2, count(max(startvalue,1)))
    A296991_list = list(islice(A296991_gen(),20)) # Chai Wah Wu, Nov 08 2022