A297108 If n is prime(k)^e, e >= 1, then a(n) = 2^(k-1), otherwise 0; Möbius transform of A048675.
0, 1, 2, 1, 4, 0, 8, 1, 2, 0, 16, 0, 32, 0, 0, 1, 64, 0, 128, 0, 0, 0, 256, 0, 4, 0, 2, 0, 512, 0, 1024, 1, 0, 0, 0, 0, 2048, 0, 0, 0, 4096, 0, 8192, 0, 0, 0, 16384, 0, 8, 0, 0, 0, 32768, 0, 0, 0, 0, 0, 65536, 0, 131072, 0, 0, 1, 0, 0, 262144, 0, 0, 0, 524288, 0, 1048576, 0, 0, 0, 0, 0, 2097152, 0, 2, 0, 4194304
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1024
Programs
-
PARI
A297108(n) = if(1==omega(n),2^(primepi(factor(n)[1,1])-1),0); \\ A more complicated way which demonstrates the Moebius transform: A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ This function after Michel Marcus A297108(n) = sumdiv(n,d,moebius(n/d)*A048675(d)); \\ And yet another way demonstrating the comment: A248663(n) = A048675(core(n)); A297108(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A248663(d)))); (v); } \\ after code in A295901.
Comments