cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297108 If n is prime(k)^e, e >= 1, then a(n) = 2^(k-1), otherwise 0; Möbius transform of A048675.

Original entry on oeis.org

0, 1, 2, 1, 4, 0, 8, 1, 2, 0, 16, 0, 32, 0, 0, 1, 64, 0, 128, 0, 0, 0, 256, 0, 4, 0, 2, 0, 512, 0, 1024, 1, 0, 0, 0, 0, 2048, 0, 0, 0, 4096, 0, 8192, 0, 0, 0, 16384, 0, 8, 0, 0, 0, 32768, 0, 0, 0, 0, 0, 65536, 0, 131072, 0, 0, 1, 0, 0, 262144, 0, 0, 0, 524288, 0, 1048576, 0, 0, 0, 0, 0, 2097152, 0, 2, 0, 4194304
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2017

Keywords

Comments

This is also Xor-Moebius transform of A248663, in other words, the unique sequence satisfying SumXOR_{d divides n} a(d) = A248663(n) for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of this transform.

Crossrefs

Programs

  • PARI
    A297108(n) = if(1==omega(n),2^(primepi(factor(n)[1,1])-1),0);
    \\ A more complicated way which demonstrates the Moebius transform:
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ This function after Michel Marcus
    A297108(n) = sumdiv(n,d,moebius(n/d)*A048675(d));
    \\ And yet another way demonstrating the comment:
    A248663(n) = A048675(core(n));
    A297108(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A248663(d)))); (v); } \\ after code in A295901.

Formula

If A001221(n) = 1 [when n is in A000961], then a(n) = 2^(A297109(n)-1) = 2^(A055396(n)-1), otherwise 0.
a(n) = Sum_{d|n} A048675(d)*A008683(n/d).