A297120 Number of compositions derived from the overpartitions of n.
1, 2, 5, 14, 36, 92, 234, 586, 1452, 3562, 8674, 20956, 50290, 119922, 284308, 670458, 1573250, 3674700, 8546282, 19796234, 45681908, 105041402, 240723618, 549919604, 1252492674, 2844551866, 6442833156, 14555300218, 32801922154, 73749649900, 165443000338
Offset: 0
Keywords
Examples
The A015128(4) = 14 overpartitions of 4 are: 4; 4'; 3,1; 3,1'; 3'1; 3',1', 2,2; 2',2; 2,1,1; 2,1',1; 2',1,1; 2',1',1; 1,1,1,1; and 1',1,1,1. The corresponding 36 compositions are 4; 4'; 3,1; 1,3; 3,1'; 1',3; 3',1; 1,3'; 3',1'; 1',3'; 2,2; 2,2'; 2',2; 2,1,1; 1,2,1; 1,1,2; 2,1,1'; 2,1',1; 1,2,1'; 1,1',2'; 1',1,2; 1',2,1; 2',1,1; 1,2',2; 1,1,2'; 2',1,1'; 2',1',1; 1,2',1'; 1,1',2'; 1',2',1; 1',1,2'; 1,1,1,1; 1,1,1,1'; 1,1,1',1; 1,1',1,1; and 1',1,1,1. Note: For a sequence of like parts p,p,...p, an overcomposition of n will only recognize p,p...p and p',p...,p; the p' is not allowed to be other than the initial p term.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0 or i=1, (p+n)!* (1+n)/n!, add(b(n-i*j, i-1, p+j)*(1+j)/j!, j=0..n/i)) end: a:= n-> b(n$2, 0): seq(a(n), n=0..35); # Alois P. Heinz, Dec 26 2017
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, (p + n)!*(n + 1)/n!, Sum[b[n - i*j, i - 1, p + j]*(j + 1)/j!, {j, 0, n/i}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Dec 27 2017, after Alois P. Heinz *)
-
PARI
{my(n=30); apply(p->subst(serlaplace(p), y, 1), Vec(prod(k=1, n, (1+y*x^k)*exp(y*x^k + O(x*x^n)))))} \\ Andrew Howroyd, Dec 26 2017
-
Python
from sympy.core.cache import cacheit from sympy import factorial @cacheit def b(n, i, p): return factorial(p + n)*(n + 1)//factorial(n) if n==0 or i==1 else sum(b(n - i*j, i - 1, p + j)*(j + 1)//factorial(j) for j in range(n//i + 1)) def a(n): return b(n, n, 0) print([a(n) for n in range(41)]) # Indranil Ghosh, Dec 29 2017, after Maple code
Extensions
More terms from Alois P. Heinz, Dec 26 2017
Comments