A297056
Number of edge covers in the n X n king graph.
Original entry on oeis.org
0, 41, 559647, 2058903341490, 1919822469194024912961, 454793583387514185843536081792977, 27368974025724800737173203530619000355806000376, 418403166660689804867337021992321072270266489726877793864921013
Offset: 1
A297349
Number of edge covers in the 2 X n king graph.
Original entry on oeis.org
1, 41, 1201, 36281, 1094401, 33014921, 995960401, 30045123161, 906370788001, 27342474236201, 824840018262001, 24882936703189241, 750643185668251201, 22644641945255809481, 683120580615598976401, 20607688511425541428121, 621671836326816125138401
Offset: 1
-
(* Start from Eric W. Weisstein, Dec 29 2017 *)
Table[-RootSum[24 - 36 # - 29 #^2 + #^3 &, -9152 #^n - 1682 #^(n + 1) + 65 #^(n + 2) &]/16889, {n, 20}]
-RootSum[24 - 36 # - 29 #^2 + #^3 &, #^Range[20] (-9152 - 1682 # + 65 #^2) &]/16889
LinearRecurrence[{29, 36, -24}, {1, 41, 1201}, 20]
CoefficientList[Series[(1 + 12 x - 24 x^2)/(1 - 29 x - 36 x^2 + 24 x^3), {x, 0, 20}], x]
(* End *)
-
Vec(x*(1 + 12*x - 24*x^2)/(1 - 29*x - 36*x^2 + 24*x^3) + O(x^20))
Showing 1-2 of 2 results.