cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A297213 Expansion of e.g.f. log(1 + arctanh(x))*exp(-x).

Original entry on oeis.org

0, 1, -3, 10, -40, 213, -1383, 11002, -100616, 1062625, -12508067, 164543938, -2368224032, 37311284645, -634900302775, 11658800863330, -229004281334768, 4804124787023265, -106986109080667043, 2524701174424967130, -62860054802079553016, 1648303843512405478485
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + arctanh(x))*exp(-x) = x/1! - 3*x^2/2! + 10*x^3/3! - 40*x^4/4! + 213*x^5/5! - 1383*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    S:= series(log(1+arctanh(x))*exp(-x),x,51):
    seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Jul 09 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[Log[1 + ArcTanh[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 21; CoefficientList[Series[Log[1 + (Log[1 + x] - Log[1 - x])/2] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!

A297209 Expansion of e.g.f. log(1 + arcsin(x))*exp(-x).

Original entry on oeis.org

0, 1, -3, 9, -32, 148, -853, 6027, -49576, 470624, -5005137, 59454923, -774282632, 11035740844, -169997137269, 2826070412955, -50256453936368, 954657085889760, -19247168446169665, 411277539407862707, -9269937746437524256, 220085825544691181500, -5483977295221312280757
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + arcsin(x))*exp(-x) = x/1! - 3*x^2/2! + 9*x^3/3! - 32*x^4/4! + 148*x^5/5! - 853*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1+arcsin(x))*exp(-x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + ArcSin[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Log[1 - I Log[I x + Sqrt[1 - x^2]]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    x='x+O('x^99); concat([0], Vec(serlaplace(exp(-x)*log(1+asin(x))))) \\ Altug Alkan, Dec 28 2017

A297210 Expansion of e.g.f. log(1 + arcsinh(x))*exp(-x).

Original entry on oeis.org

0, 1, -3, 7, -16, 48, -213, 1027, -4856, 32512, -309377, 2527963, -16805072, 179877332, -2916171997, 32511289795, -227822369168, 3575741575680, -98643332014049, 1352701143217491, -6534261348983096, 168508582018012980, -9094443640555413357, 143341194607564099595
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			log(1 + arcsinh(x))*exp(-x) = x/1! - 3*x^2/2! + 7*x^3/3! - 16*x^4/4! + 48*x^5/5! - 213*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(log(1+arcsinh(x))*exp(-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 + ArcSinh[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 23; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-3 of 3 results.