A297209
Expansion of e.g.f. log(1 + arcsin(x))*exp(-x).
Original entry on oeis.org
0, 1, -3, 9, -32, 148, -853, 6027, -49576, 470624, -5005137, 59454923, -774282632, 11035740844, -169997137269, 2826070412955, -50256453936368, 954657085889760, -19247168446169665, 411277539407862707, -9269937746437524256, 220085825544691181500, -5483977295221312280757
Offset: 0
log(1 + arcsin(x))*exp(-x) = x/1! - 3*x^2/2! + 9*x^3/3! - 32*x^4/4! + 148*x^5/5! - 853*x^6/6! + ...
-
a:=series(log(1+arcsin(x))*exp(-x),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[Log[1 + ArcSin[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Log[1 - I Log[I x + Sqrt[1 - x^2]]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
-
x='x+O('x^99); concat([0], Vec(serlaplace(exp(-x)*log(1+asin(x))))) \\ Altug Alkan, Dec 28 2017
A297210
Expansion of e.g.f. log(1 + arcsinh(x))*exp(-x).
Original entry on oeis.org
0, 1, -3, 7, -16, 48, -213, 1027, -4856, 32512, -309377, 2527963, -16805072, 179877332, -2916171997, 32511289795, -227822369168, 3575741575680, -98643332014049, 1352701143217491, -6534261348983096, 168508582018012980, -9094443640555413357, 143341194607564099595
Offset: 0
log(1 + arcsinh(x))*exp(-x) = x/1! - 3*x^2/2! + 7*x^3/3! - 16*x^4/4! + 48*x^5/5! - 213*x^6/6! + ...
-
a:=series(log(1+arcsinh(x))*exp(-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[Log[1 + ArcSinh[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 + Log[x + Sqrt[1 + x^2]]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
A297211
Expansion of e.g.f. log(1 + arctan(x))*exp(-x).
Original entry on oeis.org
0, 1, -3, 6, -8, 13, -103, 462, 824, -8239, -147747, 1233518, 12148288, -127674419, -2090702391, 24495009510, 410685350032, -5514147250815, -111860639828131, 1673006899192118, 37306857729115304, -619246417449233555, -15476404474443728487, 281907759055194714206
Offset: 0
log(1 + arctan(x))*exp(-x) = x/1! - 3*x^2/2! + 6*x^3/3! - 8*x^4/4! + 13*x^5/5! - 103*x^6/6! + ...
-
a:=series(log(1+arctan(x))*exp(-x),x=0,24): seq(n!*coeff(a,x,n),n=0..23); # Paolo P. Lava, Mar 26 2019
-
nmax = 23; CoefficientList[Series[Log[1 + ArcTan[x]] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Log[1 + (I/2) (Log[1 - I x] - Log[1 + I x])] Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-3 of 3 results.