cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297215 Expansion of e.g.f. exp(cos(tan(x))-1) (even powers only).

Original entry on oeis.org

1, -1, -4, -7, 1003, 64836, 3350349, 104475395, -12291888052, -4268687337603, -877769324284177, -139938933307889412, -9581950082738688167, 6333750977985105075527, 4837035706491587870342140, 2439859866050865745230242689, 1033093869484852949078289394195
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			exp(cos(tan(x))-1) = 1 - x^2/2! - 4*x^4/4! - 7*x^6/6! + 1003*x^8/8! + 64836*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Exp[Cos[Tan[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cos(tan(x))-1).

A298245 Expansion of e.g.f. exp(cos(tanh(x))-1) (even powers only).

Original entry on oeis.org

1, -1, 12, -327, 15883, -1202524, 130394253, -19113418989, 3632485387276, -867280709024131, 253803272212372575, -89250842789856565620, 37105568909251258810585, -17991614679286735149423193, 10057557723279565571532112044, -6417980557539322347015938082111
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			exp(cos(tanh(x))-1) = 1 - x^2/2! + 12*x^4/4! - 327*x^6/6! + 15883*x^8/8! - 1202524*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[Cos[Tanh[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cos(tanh(x))-1).
Showing 1-2 of 2 results.