cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A297214 Expansion of e.g.f. exp(cos(sin(x))-1) (even powers only).

Original entry on oeis.org

1, -1, 8, -127, 3523, -146964, 8538477, -655457233, 63974756924, -7713566822979, 1123255462229507, -193995005614903728, 39147722262966666217, -9115873617718182207793, 2423565558533387761866928, -728969374928760685473620951, 246100624914698937364249220851
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			exp(cos(sin(x))-1) = 1 - x^2/2! + 8*x^4/4! - 127*x^6/6! + 3523*x^8/8! - 146964*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Exp[Cos[Sin[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cos(sin(x))-1).

A298245 Expansion of e.g.f. exp(cos(tanh(x))-1) (even powers only).

Original entry on oeis.org

1, -1, 12, -327, 15883, -1202524, 130394253, -19113418989, 3632485387276, -867280709024131, 253803272212372575, -89250842789856565620, 37105568909251258810585, -17991614679286735149423193, 10057557723279565571532112044, -6417980557539322347015938082111
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			exp(cos(tanh(x))-1) = 1 - x^2/2! + 12*x^4/4! - 327*x^6/6! + 15883*x^8/8! - 1202524*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[Cos[Tanh[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cos(tanh(x))-1).
Showing 1-2 of 2 results.