A297305 Numbers k such that k^4 can be written as a sum of five positive 4th powers.
5, 10, 15, 20, 25, 30, 31, 35, 40, 45, 50, 55, 60, 62, 65, 70, 75, 80, 85, 89, 90, 93, 95, 100, 103, 105, 110, 115, 120, 124, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 178, 180, 185, 186, 190, 195, 200, 205, 206, 210, 215, 217, 220, 225, 230, 233
Offset: 1
Keywords
Examples
5^4 = 2^4 + 2^4 + 3^4 + 4^4 + 4^4 (= 625). 31^4 = 10^4 + 10^4 + 10^4 + 17^4 + 30^4 (= 923521). 89^4 = 10^4 + 35^4 + 52^4 + 60^4 + 80^4 (= 62742241). 103^4 = 4^4 + 15^4 + 50^4 + 50^4 + 100^4 (= 112550881).
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..500
- Titus Piezas III, Ramanujan and the Quartic Equation 2^4+2^4+3^4+4^4+4^4 = 5^4, 2005.
- Jinyuan Wang, All solutions to k^4 = a^4 + b^4 + c^4 + d^4 + e^4 with k < 999.
- Eric Weisstein's World of Mathematics, Diophantine Equation 4th Powers.
- Index to sequences related to Diophantine equations (4,1,5)
Extensions
a(43)-a(57) from Jon E. Schoenfield, Mar 17 2018
Comments