cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386494 Primitive terms of A297305.

Original entry on oeis.org

5, 31, 89, 103, 233, 313, 317, 321, 331, 337, 347, 359, 363, 371, 383, 397, 401, 413, 417, 421, 431, 441, 443, 461, 463, 471, 479, 481, 483, 491, 493, 499, 501, 507, 511, 531, 537, 543, 551, 561, 571, 581, 603, 629, 631, 641, 643, 653, 661, 671, 677, 683, 689
Offset: 1

Views

Author

Michel Marcus, Jul 23 2025

Keywords

Comments

Terms of A297305 that are not a multiple of a lesser term of A297305.

Crossrefs

Cf. A297305.

Extensions

More terms from Jinyuan Wang, Jul 24 2025

A301601 Numbers k such that k^6 can be written as a sum of 11 positive 6th powers.

Original entry on oeis.org

18, 19, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2018

Keywords

Comments

If k is in the sequence, then k*m is in the sequence for every positive integer m.
Conjecture: 35 is the largest integer not in the sequence. - Jon E. Schoenfield, Mar 24 2018

Examples

			18^6 = 2^6 + 5^6 + 5^6 +  5^6 +  7^6 +  7^6 +  9^6 +  9^6 + 10^6 + 14^6 + 17^6.
19^6 = 1^6 + 7^6 + 7^6 +  7^6 +  8^6 + 12^6 + 13^6 + 13^6 + 13^6 + 13^6 + 17^6.
30^6 = 1^6 + 2^6 + 7^6 +  7^6 +  9^6 + 12^6 + 17^6 + 17^6 + 19^6 + 23^6 + 28^6.
31^6 = 3^6 + 4^6 + 7^6 +  7^6 + 11^6 + 11^6 + 13^6 + 13^6 + 23^6 + 25^6 + 28^6.
32^6 = 7^6 + 7^6 + 7^6 + 17^6 + 17^6 + 17^6 + 18^6 + 20^6 + 20^6 + 25^6 + 29^6.
33^6 = 1^6 + 4^6 + 4^6 +  6^6 + 10^6 + 14^6 + 20^6 + 20^6 + 24^6 + 28^6 + 28^6.
34^6 = 1^6 + 1^6 + 2^6 +  5^6 +  7^6 +  7^6 + 12^6 + 17^6 + 23^6 + 28^6 + 31^6.
36^6 = 1^6 + 1^6 + 1^6 +  7^6 + 14^6 + 14^6 + 19^6 + 19^6 + 19^6 + 30^6 + 33^6.
		

Crossrefs

Extensions

a(9)-a(65) from Jon E. Schoenfield, Mar 24 2018

A386225 Numbers x such that there exist four integers 00, t>0 and w>0 such that sigma(x)^4 = sigma(y)^4 = x^4 + y^4 + z^4 + t^4 + w^4.

Original entry on oeis.org

24, 240, 600
Offset: 1

Views

Author

S. I. Dimitrov, Jul 15 2025

Keywords

Comments

The numbers x, y, z, t and w form a sigma-quartic quintuple.
[91963648, 91963648, 137945472, 183927296, 183927296] is another quintuple. - Michel Marcus, Jul 28 2025

Examples

			(24, 24, 36, 48, 48) is such a quintuple because sigma(24)^4 = sigma(24)^4 = 60^4 = 24^4 + 24^4 + 36^4 + 48^4 + 48^4.
(240, 240, 240, 408, 720) and (600, 600, 600, 1020, 1800) are the two next quintuples.
		

Crossrefs

Programs

  • PARI
    find4(ss) = my(v=List(), k, t); ss\=1; for(x=1, sqrtnint(ss-2, 4), for(y=1, min(sqrtnint(ss-x^4-1, 4), x), k=x^4+y^4; for(z=1, min(sqrtnint(ss-k, 4), y), if (k+z^4==ss, return([x,y,z])))));
    isok4(x) = my(s=sigma(x), v=select(z->(z>=x), invsigma(s))); if (#v >=2, for (i=1, #v, my(k=s^4 - x^4 - v[i]^4); if (k>0, my(xyz = find4(k)); if (xyz, return([x, v[i], xyz[1], xyz[2], xyz[3]]));););); \\ Michel Marcus, Jul 22 2025
Showing 1-3 of 3 results.