A297325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j*x^j)^k.
1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, -2, 0, 1, -4, 0, -2, 2, 0, 1, -5, 2, -1, 9, -1, 0, 1, -6, 5, 0, 18, -2, 4, 0, 1, -7, 9, 0, 27, -12, 10, -1, 0, 1, -8, 14, -2, 35, -36, 11, -16, 18, 0, 1, -9, 20, -7, 42, -76, 14, -54, 38, -22, 0, 1, -10, 27, -16, 49, -132, 35, -104, 84, -98, 12, 0
Offset: 0
Examples
G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 3)*x^2 - (1/6)*k*(k^2 - 9*k + 20)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 107*k - 42)*x^4 - (1/120)*k*(k^4 - 30*k^3 + 335*k^2 - 810*k + 624)*x^5 + ... Square array begins: 1, 1, 1, 1, 1, 1, ... 0, -1, -2, -3, -4, -5, ... 0, -1, -1, 0, 2, 5, ... 0, -2, -2, -1, 0, 0, ... 0, 2, 9, 18, 27, 35, ... 0, -1, -2, -12, -36, -76, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
Crossrefs
Columns k=0..32 give A000007, A022693, A022694, A022695, A022696, A022697, A022698, A022699, A022700, A022701, A022702, A022703, A022704, A022705, A022706, A022707, A022708, A022709, A022710, A022711, A022712, A022713, A022714, A022715, A022716, A022717, A022718, A022719, A022720, A022721, A022722, A022723, A022724.
Main diagonal gives A297326.
Antidiagonal sums give A299210.
Programs
-
Maple
with(numtheory): A:= proc(n, k) option remember; `if`(n=0, 1, -k*add(add( (-d)^(1+j/d), d=divisors(j))*A(n-j, k), j=1..n)/n) end: seq(seq(A(n, d-n), n=0..d), d=0..14); # Alois P. Heinz, Apr 20 2018
-
Mathematica
Table[Function[k, SeriesCoefficient[Product[1/(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Formula
G.f. of column k: Product_{j>=1} 1/(1 + j*x^j)^k.