cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, -2, 0, 1, -4, 0, -2, 2, 0, 1, -5, 2, -1, 9, -1, 0, 1, -6, 5, 0, 18, -2, 4, 0, 1, -7, 9, 0, 27, -12, 10, -1, 0, 1, -8, 14, -2, 35, -36, 11, -16, 18, 0, 1, -9, 20, -7, 42, -76, 14, -54, 38, -22, 0, 1, -10, 27, -16, 49, -132, 35, -104, 84, -98, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 3)*x^2 - (1/6)*k*(k^2 - 9*k + 20)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 107*k - 42)*x^4 - (1/120)*k*(k^4 - 30*k^3 + 335*k^2 - 810*k + 624)*x^5 + ...
Square array begins:
  1,  1,  1,   1,   1,   1,  ...
  0, -1, -2,  -3,  -4,  -5,  ...
  0, -1, -1,   0,   2,   5,  ...
  0, -2, -2,  -1,   0,   0,  ...
  0,  2,  9,  18,  27,  35,  ...
  0, -1, -2, -12, -36, -76,  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*add(add(
          (-d)^(1+j/d), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Apr 20 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} 1/(1 + j*x^j)^k.