cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A297325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, -2, 0, 1, -4, 0, -2, 2, 0, 1, -5, 2, -1, 9, -1, 0, 1, -6, 5, 0, 18, -2, 4, 0, 1, -7, 9, 0, 27, -12, 10, -1, 0, 1, -8, 14, -2, 35, -36, 11, -16, 18, 0, 1, -9, 20, -7, 42, -76, 14, -54, 38, -22, 0, 1, -10, 27, -16, 49, -132, 35, -104, 84, -98, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 - k*x + (1/2)*k*(k - 3)*x^2 - (1/6)*k*(k^2 - 9*k + 20)*x^3 + (1/24)*k*(k^3 - 18*k^2 + 107*k - 42)*x^4 - (1/120)*k*(k^4 - 30*k^3 + 335*k^2 - 810*k + 624)*x^5 + ...
Square array begins:
  1,  1,  1,   1,   1,   1,  ...
  0, -1, -2,  -3,  -4,  -5,  ...
  0, -1, -1,   0,   2,   5,  ...
  0, -2, -2,  -1,   0,   0,  ...
  0,  2,  9,  18,  27,  35,  ...
  0, -1, -2, -12, -36, -76,  ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*add(add(
          (-d)^(1+j/d), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Apr 20 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} 1/(1 + j*x^j)^k.

A297322 a(n) = [x^n] Product_{k>=1} (1 + k*x^k)^n.

Original entry on oeis.org

1, 1, 5, 28, 137, 726, 3896, 21071, 115089, 633007, 3500740, 19448573, 108458924, 606787572, 3404112479, 19142919543, 107874784017, 609021410570, 3443952349385, 19503777943838, 110599636109572, 627924447630011, 3568885868192419, 20304321490356084
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Crossrefs

Main diagonal of A297321.

Programs

  • Maple
    f:= proc(n) local k;
    coeff(series(mul((1+k*x^k)^n,k=1..n),x,n+1),x,n);
    end proc:
    map(f, [$0..30]); # Robert Israel, Dec 28 2017
  • Mathematica
    Table[SeriesCoefficient[Product[(1 + k x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 24}]

Formula

a(n) = A297321(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 5.814548482877687529318372516965305077397562... and c = 0.2563102401728134539247148322678842806264... - Vaclav Kotesovec, Aug 01 2019

A297329 a(n) = [x^n] Product_{k>=1} 1/(1 - k*x^k)^n.

Original entry on oeis.org

1, 1, 7, 37, 219, 1276, 7687, 46551, 285043, 1756243, 10883842, 67751289, 423366831, 2654041235, 16683909711, 105129718102, 663837626163, 4199521413019, 26610335585263, 168864540960165, 1073001606214814, 6826237566223329, 43474472693256491, 277152041235941803
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Crossrefs

Main diagonal of A297328.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 23}]

Formula

a(n) = A297328(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 6.51548390811914394587815688142024783108478... and c = 0.2552310487728179222346375591994440863074... - Vaclav Kotesovec, Aug 01 2019

A297324 a(n) = [x^n] Product_{k>=1} (1 - k*x^k)^n.

Original entry on oeis.org

1, -1, -3, 8, 9, -26, -168, 489, 1041, -5599, 12, 27103, 23436, -222912, -435473, 3177433, 375569, -24956018, 6931209, 181844002, 57372644, -2158209675, 853739235, 20642183588, -25063980804, -148768035501, 224915906836, 1322267927471, -2337343745721, -12604818831294
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Crossrefs

Main diagonal of A297323.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - k x^k)^n, {k, 1, n}], {x, 0, n}], {n, 0, 29}]

Formula

a(n) = A297323(n,n).

A298988 a(n) = [x^n] Product_{k>=1} 1/(1 + n*x^k)^k.

Original entry on oeis.org

1, -1, 0, -18, 208, -2400, 36504, -663754, 13808320, -324176418, 8487126400, -245122390601, 7741417124880, -265402847130421, 9816338228638872, -389618889514254225, 16518399076342421248, -745025763154442071130, 35619835529954597786208, -1799459812004380374518790, 95780758238408017088795600
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ (-1)^n * n^n * (1 - 2/n + 6/n^2 - 14/n^3 + 33/n^4 - 70/n^5 + 149/n^6 - 298/n^7 + 591/n^8 - 1132/n^9 + 2139/n^10 + ...), for coefficients, see A005380. - Vaclav Kotesovec, Aug 21 2018
Showing 1-5 of 5 results.