cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A303333 a(n) = [x^n] (theta_3(x^(1/2))^n + theta_4(x^(1/2))^n)/2, where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 0, 4, 24, 24, 560, 2080, 11088, 74864, 343536, 2050344, 11676280, 61903776, 363737712, 2022013760, 11335886864, 65187410400, 365627715968, 2085523894756, 11894205734280, 67517852274384, 386394626371680, 2205027379874400, 12602057718873040, 72195482578935488, 413235574714857360
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 21 2018

Keywords

Crossrefs

Main diagonal of A297331.
Cf. A066535.

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x^(1/2)]^n + EllipticTheta[4, 0, x^(1/2)]^n)/2, {x, 0, n}], {n, 0, 25}]
    Table[SeriesCoefficient[EllipticTheta[3, 0, x]^n, {x, 0, 2 n}], {n, 0, 25}]
    Table[SeriesCoefficient[EllipticTheta[3, 0, Sqrt[x]]^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jun 26 2019 *)

Formula

a(n) = A297331(n,n).
a(n) ~ c * d^n / sqrt(n), where d = 5.84456473064455581274428417... and c = 0.14104739588693592503498... - Vaclav Kotesovec, Jun 26 2019
Showing 1-1 of 1 results.