cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338464 Number of ways to write 2*n as an ordered sum of n squares of positive integers.

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 15, 0, 8, 84, 0, 110, 495, 0, 1092, 3018, 120, 9520, 18870, 2907, 77520, 120270, 43890, 606188, 780023, 531300, 4620200, 5161377, 5651100, 34622172, 35045340, 55234560, 256503672, 245772464, 508930224, 1886151225, 1788167610, 4491607230
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2021

Keywords

Comments

Also number of ways to write n as an ordered sum of n nonnegative numbers one less than a square.

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add((s->
          `if`(s>n, 0, b(n-s, t-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..39);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    Table[SeriesCoefficient[((EllipticTheta[3, 0, x] - 1)/2)^n, {x, 0, 2 n}], {n, 0, 37}]

Formula

a(n) = [x^(2*n)] ((theta_3(x) - 1) / 2)^n, where theta_3() is the Jacobi theta function.
a(n) = [x^n] (Sum_{k>=0} x^(k*(k + 2)))^n.
a(n) = A337165(2n,n). - Alois P. Heinz, Feb 04 2021

A297331 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 4, 2, 0, 1, 12, 4, 0, 0, 1, 24, 6, 0, 0, 0, 1, 40, 24, 24, 4, 0, 0, 1, 60, 90, 96, 12, 8, 0, 0, 1, 84, 252, 240, 24, 24, 0, 0, 0, 1, 112, 574, 544, 200, 144, 8, 0, 2, 0, 1, 144, 1136, 1288, 1020, 560, 96, 48, 4, 0, 0, 1, 180, 2034, 3136, 3444, 1560, 400, 192, 6, 4, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			Square array begins:
1,  1,  1,   1,    1,    1,  ...
0,  0,  4,  12,   24,   40,  ...
0,  2,  4,   6,   24,   90,  ...
0,  0,  0,  24,   96,  240,  ...
0,  0,  4,  12,   24,  200,  ...
0,  0,  8,  24,  144,  560,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[(EllipticTheta[3, 0, q^(1/2)]^k + EllipticTheta[4, 0, q^(1/2)]^k)/2, {q, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (theta_3(q^(1/2))^k + theta_4(q^(1/2))^k)/2, where theta_() is the Jacobi theta function.
Showing 1-2 of 2 results.