cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297382 Denominator of -A023900(n)/2.

Original entry on oeis.org

2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, Dec 29 2017

Keywords

Comments

Also denominator of A173557(n)/2. a(n) = 2 iff n is a power of 2, 1 otherwise. - Antti Karttunen, Sep 30 2018

Crossrefs

Cf. A297381 (numerators).
One more than A209229.

Programs

  • Mathematica
    Clear[n, s, nn]; nn = 64; Denominator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]]
  • PARI
    A297382(n) = denominator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = denominator of -A023900(n)/2.
a(n) = 1 + A209229(n). - Antti Karttunen, Sep 30 2018
a(n) = A014963(2*n). - Ridouane Oudra, Jul 03 2025

Extensions

More terms from Antti Karttunen, Sep 30 2018