A297382 Denominator of -A023900(n)/2.
2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Clear[n, s, nn]; nn = 64; Denominator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]]
-
PARI
A297382(n) = denominator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ Antti Karttunen, Sep 30 2018
Formula
a(n) = denominator of -A023900(n)/2.
a(n) = 1 + A209229(n). - Antti Karttunen, Sep 30 2018
a(n) = A014963(2*n). - Ridouane Oudra, Jul 03 2025
Extensions
More terms from Antti Karttunen, Sep 30 2018
Comments