A297401 Non-sphenic numbers with exactly 8 divisors.
24, 40, 54, 56, 88, 104, 128, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112, 1161, 1192
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Chris K. Caldwell and G. L. Honaker, Jr., Prime Curios!
- Wikipedia, Sphenic number
Programs
-
Maple
N:= 1000: # to get all terms <= N P:= select(isprime, [2,seq(i,i=3..N)]): R:= NULL: for p in P do if p^7 <= N then R:= R, p^7 fi; if p^3 > N then break fi; for q in P while p^3*q <= N do if q <> p then R:= R, p^3*q fi od: od: sort([R]); # Robert Israel, Dec 31 2017
-
Mathematica
Select[Range@ 1200, And[DivisorSigma[0, #] == 8, Nand[PrimeNu[#] == 3, PrimeOmega[#] == 3]] &] (* Michael De Vlieger, Dec 29 2017 *)
-
PARI
isok(n) = !((bigomega(n)==3) && (omega(n)==3)) && (numdiv(n) == 8); \\ Michel Marcus, Dec 29 2017
-
Python
from sympy import primepi, primerange, integer_nthroot def A297401(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0])) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
Extensions
More terms from Michel Marcus, Dec 29 2017
Comments