cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297401 Non-sphenic numbers with exactly 8 divisors.

Original entry on oeis.org

24, 40, 54, 56, 88, 104, 128, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112, 1161, 1192
Offset: 1

Views

Author

G. L. Honaker, Jr., Dec 29 2017

Keywords

Comments

These are the numbers of the form p^3*q (with primes p and q distinct) or p^7. Thus it is the union of A065036 and A092759, and this can be used for direct enumeration. - Alex Meiburg, Dec 31 2017

Crossrefs

Subsequence of A030626.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    P:= select(isprime, [2,seq(i,i=3..N)]):
    R:= NULL:
    for p in P do
      if p^7 <= N then R:= R, p^7 fi;
      if p^3 > N then break fi;
      for q in P while p^3*q <= N do if q <> p then R:= R, p^3*q fi od:
    od:
    sort([R]); # Robert Israel, Dec 31 2017
  • Mathematica
    Select[Range@ 1200, And[DivisorSigma[0, #] == 8, Nand[PrimeNu[#] == 3, PrimeOmega[#] == 3]] &] (* Michael De Vlieger, Dec 29 2017 *)
  • PARI
    isok(n) = !((bigomega(n)==3) && (omega(n)==3)) && (numdiv(n) == 8); \\ Michel Marcus, Dec 29 2017
    
  • Python
    from sympy import primepi, primerange, integer_nthroot
    def A297401(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))+primepi(integer_nthroot(x,4)[0])-primepi(integer_nthroot(x,7)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

Equals {A030626} \ {A007304}. - Omar E. Pol, Dec 30 2017

Extensions

More terms from Michel Marcus, Dec 29 2017