A002804 (Presumed) solution to Waring's problem: g(n) = 2^n + floor((3/2)^n) - 2.
1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, 16673, 33203, 66190, 132055, 263619, 526502, 1051899, 2102137, 4201783, 8399828, 16794048, 33579681, 67146738, 134274541, 268520676, 536998744, 1073933573, 2147771272, 4295398733, 8590581749
Offset: 1
References
- Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers (Basic Books 1996) 252-257.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30.1, p. 195.
- G. H. Hardy, Collected Papers. Vols. 1-, Oxford Univ. Press, 1966-; see vol. 1, p. 668.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 337.
- S. Pillai, On Waring's Problem, Journal of Indian Math. Soc., 2 (1936), 16-44
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 138.
- P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 239.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 249-250.
- R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
- Edward Waring, Meditationes algebraicae, Cantabrigiae: typis Academicis excudebat J. Archdeacon, 1770.
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
- Brennan Benfield and Oliver Lippard, Integers that are not the sum of positive powers, arXiv:2404.08193 [math.NT], 2024.
- Leonard E. Dickson, The Waring Problem and its generalizations, Bulletin of the AMS, 42 (1936) 833-842.
- Jeffrey M. Kubina and Marvin C. Wunderlich, Extending Waring's conjecture to 471,600,000, Math. Comp., 55, no. 192 (1990): 815-820.
- A. V. Kumchev and D. I. Tolev, An invitation to additive number theory, arXiv:math/0412220 [math.NT], 2004.
- Feihu Liu and Guoce Xin, On Frobenius Formulas of Power Sequences, arXiv:2210.02722 [math.CO], 2022. See p. 22.
- Kurt Mahler, On the fractional parts of the powers of a rational number (II), Mathematika, 4 (1957) 122-124 Math. Rev. 20:33.
- Ramin Takloo-Bighash, What about geometry?, A Pythagorean Introduction to Number Theory, Undergraduate Texts in Mathematics, Springer, Cham, 2018, 165-185.
- Michel Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
- Eric Weisstein's World of Mathematics, Waring's Problem.
- Wikipedia, Waring's Problem.
Crossrefs
Programs
-
Magma
[2^n+Floor((3/2)^n)-2: n in [1..40]]; // Vincenzo Librandi, Aug 15 2015
-
Maple
A002804 := n->2^n+floor( (3/2)^n ) -2;
-
Mathematica
a[n_] := 2^n + Floor[(3/2)^n] - 2; Array[a, 31] (* Robert G. Wilson v, Oct 29 2013 *) x[n_] := -(1/2) + (3/2)^n + ArcTan[Cot[(3/2)^n Pi]]/Pi; a[n_] := 2^n + x[n] - 2; Array[a, 31] (* Fred Daniel Kline, Jan 11 2018 *)
-
PARI
a(n)=2^n+(3^n>>n)-2 \\ Charles R Greathouse IV, Feb 01 2013
-
Python
def A002804(n): return (1<
>n)-2 # Chai Wah Wu, Jun 25 2024 -
Sage
[2^n+int((3/2)^n)-2 for n in range(1,34)] # Stefano Spezia, Dec 08 2024
Comments