cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297568 Number of nonisomorphic proper colorings of partition star graph using four colors.

Original entry on oeis.org

4, 12, 24, 36, 40, 108, 108, 60, 216, 180, 324, 324, 84, 360, 540, 648, 972, 972, 972, 112, 540, 1080, 660, 1080, 2916, 1512, 1944, 2916, 2916, 2916, 144, 756, 1800, 1980, 1620, 5832, 4860, 4536, 3240, 8748, 8748, 5832, 8748, 8748, 8748, 180, 1008, 2700, 3960, 1980, 2268, 9720, 14580, 9072, 13608, 4860, 17496, 14580, 26244, 13284, 9720, 26244, 26244, 17496, 26244, 26244, 26244, 220, 1296, 3780, 6600, 5940, 3024, 14580
Offset: 0

Views

Author

Marko Riedel, Dec 31 2017

Keywords

Comments

A partition star graph consists of a multiset of paths with lengths given by the elements of the partition attached to a distinguished root node. The ordering of the partitions is by traversing antichains in Young's lattice bottom to top, left to right. Isomorphism refers to the automorphisms of the star graph corresponding to the partition.

Examples

			Rows are:
   4;
  12;
  24,  36;
  40, 108, 108;
  60, 216, 180, 324, 324;
  84, 360, 540, 648, 972, 972, 972;
		

Crossrefs

Row sums give 4*A144067.
Row lengths give A000041.

Programs

  • Maple
    b:= (n, i)-> `if`(n=0, [4], `if`(i<1, [], [seq(map(x-> x*
         binomial(3^i+j-1, j), b(n-i*j, i-1))[], j=0..n/i)])):
    T:= n-> b(n$2)[]:
    seq(T(n), n=0..10);  # Alois P. Heinz, Jan 14 2018
  • Mathematica
    b[n_, i_] := If[n == 0, {4}, If[i<1, {}, Table[Map[Function[x, x*Binomial[ 3^i + j - 1, j]], b[n - i*j, i - 1]], {j, 0, n/i}]] // Flatten];
    T[n_] := b[n, n];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 17 2018, after Alois P. Heinz *)

Formula

For a partition lambda we have the OCP: k Product_{p^v in lambda} C((k-1)^p+v-1, v). Here we have k=4.