cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297662 Number of chordless cycles in the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

0, 3, 27, 108, 300, 675, 1323, 2352, 3888, 6075, 9075, 13068, 18252, 24843, 33075, 43200, 55488, 70227, 87723, 108300, 132300, 160083, 192027, 228528, 270000, 316875, 369603, 428652, 494508, 567675, 648675, 738048, 836352, 944163, 1062075, 1190700
Offset: 1

Views

Author

Eric W. Weisstein, Jan 02 2018

Keywords

Comments

The only chordless cycles in a complete tripartite graph are cycles of length 4 confined to two of the partitions. - Andrew Howroyd, Jan 03 2018

Crossrefs

Programs

  • Mathematica
    Table[3 Binomial[n, 2]^2, {n, 20}]
    3 Binomial[Range[20], 2]^2
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 27, 108, 300}, 20]
    SeriesCoefficient[Series[-3 x (1 + 4 x + x^2)/(-1 + x)^5, {x, 0, 20}], x]
  • PARI
    a(n) = 3*n^2*(n-1)^2/4; \\ Andrew Howroyd, Jan 03 2018

Formula

a(n) = 3*n^2*(n-1)^2/4 = 3*A000537(n). - Andrew Howroyd, Jan 03 2018
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -3*x^2*(1 + 4*x + x^2)/(-1 + x)^5.

Extensions

a(6)-a(36) from Andrew Howroyd, Jan 03 2018