A297708 Number of permutations p of [n] such that p(p(i)) = i for all i or p(n+1-p(i)) = n+1-i for all i.
1, 1, 2, 6, 14, 46, 132, 444, 1452, 5164, 18680, 71080, 278920, 1135624, 4774448, 20692560, 92381072, 423566224, 1994458656, 9619233888, 47516407008, 239904464608, 1237764055616, 6515682543040, 34984350444736, 191360856810688, 1065970229647232, 6041353305197184
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800 (terms n = 0..99 from Manfred Scheucher)
- Manfred Scheucher, Python program for enumeration
Programs
-
Maple
a:= proc(n) option remember; `if`(n<7, [1$2, 2, 6, 14, 46, 132][n+1], ((-25*n+149)*a(n-1)+(2*(10*n^2-7*n-106))*a(n-2)+ (45*n^2-268*n+298)*a(n-3)-(2*(10*n^2-7*n-61))*a(n-4) -(65*n^2-367*n+522)*a(n-5)-(2*(10*n^3-67*n^2+96*n+1))*a(n-6) -(45*n-113)*(n-4)*(n-6)*a(n-7))/(20*n-79)) end: seq(a(n), n=0..35); # Alois P. Heinz, Jan 07 2018
-
Mathematica
a[n_] := 2*Sum[2^k*BellB[k, 1/2]*StirlingS1[n, k], {k, 0, n}] - Sum[2^k*BellB[k]*StirlingS1[Floor[n/2], k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Jean-François Alcover, May 29 2019 *)
-
SageMath
def a135401(n): return sum( binomial(floor(n/2),2*k)*binomial(2*k,k)*factorial(k)*2^(floor(n/2)-2*k) for k in range(1+floor(n/4))) def a85(n): return sum( factorial(n) / (factorial(n-2*k) * 2^k * factorial(k)) for k in range(1+floor(n/2))) def a297708(n): return 2*a85(n) - a135401(n) for n in range(100): print(n, a297708(n))
Comments