cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297740 The number of distinct positions on an infinite chessboard reachable by the (2,3)-leaper in <= n moves.

Original entry on oeis.org

1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425, 3033, 3709, 4453, 5265, 6145, 7093, 8109, 9193, 10345, 11565, 12853, 14209, 15633, 17125, 18685, 20313, 22009, 23773, 25605, 27505, 29473, 31509, 33613, 35785, 38025, 40333, 42709, 45153, 47665, 50245, 52893
Offset: 0

Views

Author

R. J. Mathar, Jan 05 2018

Keywords

Crossrefs

Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297741 (3,4)-leaper.
Partial sums of A018839.

Programs

  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425}, 50] (* Paolo Xausa, Mar 17 2024 *)
  • PARI
    Vec((1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Jan 07 2018

Formula

a(n) = 34*n^2 + 30*n + 9 for n >= 6.
From Colin Barker, Jan 05 2018: (Start)
G.f.: (1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9. (End)