cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A297852 Number of n X 2 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 3, 7, 13, 23, 49, 95, 177, 359, 705, 1351, 2689, 5303, 10321, 20423, 40353, 79223, 156657, 309991, 611713, 1210967, 2399761, 4750919, 9419937, 18694199, 37092657, 73659175, 146373313, 290909975, 578470225, 1150862855, 2290191585, 4559123447
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 2 of A297858.

Examples

			Some solutions for n=7:
..0..1. .0..1. .0..1. .0..0. .0..1. .0..1. .0..0. .0..0. .0..1. .0..0
..0..1. .1..0. .0..1. .1..0. .0..1. .0..1. .1..1. .1..1. .0..1. .0..1
..0..1. .1..0. .1..0. .1..1. .0..1. .0..1. .0..1. .1..0. .1..0. .1..1
..1..0. .0..1. .0..1. .1..1. .1..0. .0..1. .0..0. .0..0. .1..0. .0..0
..1..0. .0..1. .0..1. .1..0. .1..0. .1..0. .0..0. .0..0. .1..0. .1..1
..0..1. .0..1. .0..1. .0..0. .0..1. .1..0. .1..0. .0..1. .0..1. .0..1
..1..0. .1..0. .0..1. .1..1. .0..1. .1..0. .1..1. .1..1. .0..1. .0..0
		

Crossrefs

Cf. A297858.

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 4*a(n-3) - 10*a(n-4) + 4*a(n-5) for n>6.
Empirical g.f.: x*(1 - 6*x^3 - 4*x^4 + 4*x^5) / ((1 - 2*x)*(1 - x - 4*x^3 + 2*x^4)). - Colin Barker, Feb 19 2018

A297853 Number of n X 3 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 7, 15, 19, 21, 33, 53, 77, 111, 171, 269, 415, 643, 1013, 1605, 2543, 4041, 6451, 10325, 16547, 26561, 42705, 68741, 110743, 178545, 288053, 464971, 750861, 1212959, 1960023, 3167961, 5121325, 8280457, 13390095, 21655079, 35024669
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 3 of A297858.

Examples

			Some solutions for n=7:
..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..0. .0..0..1. .0..0..1
..1..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..1. .1..1..1. .0..1..1
..0..1..0. .0..1..0. .1..1..1. .0..1..0. .1..0..0. .1..0..0. .0..0..0
..1..1..0. .0..1..1. .1..0..0. .0..1..0. .1..0..0. .1..1..1. .1..1..0
..1..1..0. .0..1..1. .1..1..0. .0..1..0. .1..0..1. .0..0..1. .0..0..0
..0..1..0. .0..1..0. .0..0..0. .0..1..0. .0..1..0. .1..1..1. .0..1..1
..1..0..1. .1..0..1. .0..1..1. .0..1..0. .1..0..1. .1..0..0. .0..0..1
		

Crossrefs

Cf. A297858.

Formula

Empirical: a(n) = 2*a(n-1) - a(n-4) - a(n-5) - a(n-6) + a(n-7) + a(n-8) for n>9.
Empirical g.f.: x*(1 + 5*x + x^2 - 11*x^3 - 16*x^4 - x^5 + 10*x^6 + 11*x^7 + 4*x^8) / ((1 - x)*(1 + x^2)*(1 - x - x^2)*(1 - x^2 - x^3)). - Colin Barker, Mar 22 2018

A297854 Number of nX4 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

2, 13, 19, 30, 53, 90, 145, 244, 406, 771, 1396, 2472, 4358, 7688, 13953, 25626, 46458, 83576, 150333, 271566, 494639, 900920, 1633015, 2955455, 5353266, 9717165, 17670119, 32099391, 58228907, 105619960, 191684445, 348131289, 632389497
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 4 of A297858.

Examples

			Some solutions for n=7
..0..1..0..0. .0..1..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..1
..0..1..1..1. .0..1..0..0. .0..0..1..1. .1..0..1..0. .1..0..0..0
..1..1..0..0. .0..1..1..1. .1..1..0..1. .0..1..0..1. .1..0..0..1
..0..0..1..1. .1..1..0..0. .0..0..0..0. .1..1..0..0. .0..1..1..1
..1..0..0..0. .0..0..1..1. .1..0..1..1. .1..1..0..0. .1..1..0..0
..1..0..1..1. .1..1..1..0. .1..1..0..0. .0..1..0..1. .0..0..1..1
..1..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..1. .0..1..0..1
		

Crossrefs

Cf. A297858.

Formula

Empirical: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +2*a(n-5) +a(n-6) -22*a(n-7) +22*a(n-9) +16*a(n-10) +14*a(n-11) +10*a(n-12) -4*a(n-13) -40*a(n-14) -26*a(n-15) -24*a(n-16) -12*a(n-17) -9*a(n-18) +33*a(n-19) +55*a(n-20) +13*a(n-21) +6*a(n-22) +10*a(n-23) +31*a(n-24) -24*a(n-25) -29*a(n-26) -4*a(n-27) -31*a(n-28) -25*a(n-29) +6*a(n-30) +22*a(n-31) +10*a(n-32) for n>37

A297855 Number of nX5 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

3, 23, 21, 53, 45, 81, 130, 186, 203, 313, 533, 737, 1132, 1722, 2282, 3719, 5672, 8216, 12567, 18631, 27784, 41385, 63526, 95485, 142633, 216863, 319973, 486432, 733798, 1104890, 1675037, 2510078, 3780690, 5691817, 8606387, 13011832, 19628345
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 5 of A297858.

Examples

			Some solutions for n=7
..0..1..1..1..1. .0..1..0..1..1. .0..1..1..1..0. .0..1..0..1..1
..1..0..0..0..0. .0..1..0..0..1. .1..0..0..0..1. .1..0..0..1..0
..0..1..0..0..1. .1..1..1..1..1. .0..0..1..0..0. .0..1..1..1..0
..1..1..1..1..1. .0..0..1..0..0. .1..1..0..1..1. .1..0..1..0..1
..0..0..1..0..0. .1..0..1..0..1. .1..0..1..0..1. .1..0..1..0..1
..1..0..1..0..1. .0..1..0..0..1. .1..1..0..1..1. .1..0..1..0..1
..1..0..0..0..1. .1..1..0..1..0. .0..0..1..0..0. .1..0..1..0..1
		

Crossrefs

Cf. A297858.

Formula

Empirical: a(n) = 3*a(n-3) +3*a(n-4) +3*a(n-5) +2*a(n-6) -a(n-7) -11*a(n-8) -16*a(n-9) -23*a(n-10) -11*a(n-11) +16*a(n-12) +25*a(n-13) +41*a(n-14) +4*a(n-15) -45*a(n-16) -25*a(n-17) -28*a(n-18) +90*a(n-19) +162*a(n-20) +128*a(n-21) +113*a(n-22) -175*a(n-23) -215*a(n-24) -261*a(n-25) -113*a(n-26) +119*a(n-27) +260*a(n-28) +151*a(n-29) +142*a(n-30) -421*a(n-31) -438*a(n-32) -840*a(n-33) -376*a(n-34) +213*a(n-35) +1246*a(n-36) +1426*a(n-37) +587*a(n-38) -1027*a(n-39) -1652*a(n-40) -938*a(n-41) +731*a(n-42) +1379*a(n-43) +1500*a(n-44) +927*a(n-45) +785*a(n-46) +387*a(n-47) -935*a(n-48) -2457*a(n-49) -3071*a(n-50) -1858*a(n-51) +1321*a(n-52) +3166*a(n-53) +2512*a(n-54) -460*a(n-55) -3218*a(n-56) -2132*a(n-57) +448*a(n-58) +2336*a(n-59) +1574*a(n-60) -478*a(n-61) -478*a(n-62) +520*a(n-63) +948*a(n-64) -112*a(n-65) -1672*a(n-66) -1288*a(n-67) +92*a(n-68) +1192*a(n-69) +992*a(n-70) +16*a(n-71) -488*a(n-72) -392*a(n-73) -64*a(n-74) +96*a(n-75) +64*a(n-76) for n>81

A297856 Number of nX6 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

5, 49, 33, 90, 81, 131, 146, 252, 320, 522, 705, 1188, 1654, 2554, 4086, 6240, 9384, 14677, 22912, 34760, 54598, 85044, 131603, 204203, 317467, 494005, 767077, 1194926, 1861059, 2894147, 4502964, 7013005, 10913427, 17000934, 26479606
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 6 of A297858.

Examples

			Some solutions for n=7
..0..0..1..0..0..1. .0..1..0..1..0..0. .0..0..0..1..1..1. .0..0..1..0..1..0
..1..0..1..1..1..1. .0..1..0..1..1..1. .0..1..0..1..0..1. .1..1..0..1..0..0
..0..1..0..1..0..0. .1..1..1..0..1..0. .0..0..1..0..1..1. .1..0..1..0..1..1
..1..1..0..1..0..1. .0..0..1..0..1..0. .1..1..0..1..0..0. .1..1..1..0..0..0
..0..0..0..0..1..0. .1..1..1..0..1..0. .1..0..1..0..1..0. .0..0..0..0..1..1
..1..0..1..1..0..1. .0..1..0..1..1..1. .1..1..0..1..0..0. .1..1..1..0..1..0
..1..0..1..0..1..0. .0..1..0..1..0..0. .0..0..1..0..1..1. .0..0..0..1..0..1
		

Crossrefs

Cf. A297858.

A297857 Number of nX7 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 95, 53, 145, 130, 146, 181, 289, 294, 594, 711, 1167, 1681, 2374, 3827, 6129, 8841, 14042, 20888, 31498, 51865, 82514, 125083, 194859, 300754, 471476, 758967, 1198480, 1863140, 2913216, 4550700, 7227150, 11533654, 18154246, 28482607
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Column 7 of A297858.

Examples

			Some solutions for n=7
..0..1..0..1..0..1..0. .0..1..0..1..0..1..0. .0..1..0..0..0..1..0
..0..1..0..1..1..0..1. .0..1..0..1..0..1..0. .0..1..1..1..1..1..0
..1..1..1..0..1..0..0. .0..1..0..1..0..1..0. .1..1..0..0..0..1..1
..0..0..1..0..1..1..1. .0..1..0..1..0..1..0. .0..0..1..1..1..0..0
..1..0..1..1..0..1..0. .0..1..0..1..0..1..0. .1..0..0..0..0..0..1
..0..1..0..1..0..1..0. .1..0..0..0..1..1..1. .1..0..1..1..1..0..1
..0..1..1..1..0..1..0. .0..1..1..0..1..0..0. .0..1..0..0..0..1..0
		

Crossrefs

Cf. A297858.

A297851 Number of n X n 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 3, 15, 30, 45, 131, 181, 298, 430, 1022, 1429, 2164, 2135, 4620, 3680, 9110, 11981, 9540, 87199, 22330, 77938, 182912, 34081
Offset: 1

Views

Author

R. H. Hardin, Jan 07 2018

Keywords

Comments

Diagonal of A297858.

Examples

			Some solutions for n=7
..0..0..1..1..1..0..1. .0..0..1..1..0..1..0. .0..1..1..0..0..1..1
..1..1..0..0..0..1..0. .1..1..0..0..1..0..0. .1..0..0..1..1..0..0
..0..1..1..1..1..1..0. .0..0..0..1..0..1..1. .0..1..0..0..0..0..1
..0..1..0..0..0..1..1. .1..1..0..1..0..0..0. .0..1..0..1..1..0..1
..0..1..1..1..1..0..0. .0..1..0..0..1..0..1. .0..1..0..0..0..0..1
..1..1..0..0..0..0..1. .1..0..1..0..1..0..1. .1..0..0..1..1..0..0
..0..0..1..1..1..0..1. .1..0..0..0..1..0..1. .0..1..1..0..0..1..1
		

Crossrefs

Cf. A297858.
Showing 1-7 of 7 results.