A297852
Number of n X 2 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 3, 7, 13, 23, 49, 95, 177, 359, 705, 1351, 2689, 5303, 10321, 20423, 40353, 79223, 156657, 309991, 611713, 1210967, 2399761, 4750919, 9419937, 18694199, 37092657, 73659175, 146373313, 290909975, 578470225, 1150862855, 2290191585, 4559123447
Offset: 1
Some solutions for n=7:
..0..1. .0..1. .0..1. .0..0. .0..1. .0..1. .0..0. .0..0. .0..1. .0..0
..0..1. .1..0. .0..1. .1..0. .0..1. .0..1. .1..1. .1..1. .0..1. .0..1
..0..1. .1..0. .1..0. .1..1. .0..1. .0..1. .0..1. .1..0. .1..0. .1..1
..1..0. .0..1. .0..1. .1..1. .1..0. .0..1. .0..0. .0..0. .1..0. .0..0
..1..0. .0..1. .0..1. .1..0. .1..0. .1..0. .0..0. .0..0. .1..0. .1..1
..0..1. .0..1. .0..1. .0..0. .0..1. .1..0. .1..0. .0..1. .0..1. .0..1
..1..0. .1..0. .0..1. .1..1. .0..1. .1..0. .1..1. .1..1. .0..1. .0..0
A297853
Number of n X 3 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
1, 7, 15, 19, 21, 33, 53, 77, 111, 171, 269, 415, 643, 1013, 1605, 2543, 4041, 6451, 10325, 16547, 26561, 42705, 68741, 110743, 178545, 288053, 464971, 750861, 1212959, 1960023, 3167961, 5121325, 8280457, 13390095, 21655079, 35024669
Offset: 1
Some solutions for n=7:
..0..0..1. .0..1..0. .0..1..1. .0..1..0. .0..1..0. .0..0..1. .0..0..1
..1..0..1. .1..0..1. .0..0..1. .0..1..0. .1..0..1. .1..1..1. .0..1..1
..0..1..0. .0..1..0. .1..1..1. .0..1..0. .1..0..0. .1..0..0. .0..0..0
..1..1..0. .0..1..1. .1..0..0. .0..1..0. .1..0..0. .1..1..1. .1..1..0
..1..1..0. .0..1..1. .1..1..0. .0..1..0. .1..0..1. .0..0..1. .0..0..0
..0..1..0. .0..1..0. .0..0..0. .0..1..0. .0..1..0. .1..1..1. .0..1..1
..1..0..1. .1..0..1. .0..1..1. .0..1..0. .1..0..1. .1..0..0. .0..0..1
A297854
Number of nX4 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
2, 13, 19, 30, 53, 90, 145, 244, 406, 771, 1396, 2472, 4358, 7688, 13953, 25626, 46458, 83576, 150333, 271566, 494639, 900920, 1633015, 2955455, 5353266, 9717165, 17670119, 32099391, 58228907, 105619960, 191684445, 348131289, 632389497
Offset: 1
Some solutions for n=7
..0..1..0..0. .0..1..1..0. .0..1..0..0. .0..0..1..1. .0..1..1..1
..0..1..1..1. .0..1..0..0. .0..0..1..1. .1..0..1..0. .1..0..0..0
..1..1..0..0. .0..1..1..1. .1..1..0..1. .0..1..0..1. .1..0..0..1
..0..0..1..1. .1..1..0..0. .0..0..0..0. .1..1..0..0. .0..1..1..1
..1..0..0..0. .0..0..1..1. .1..0..1..1. .1..1..0..0. .1..1..0..0
..1..0..1..1. .1..1..1..0. .1..1..0..0. .0..1..0..1. .0..0..1..1
..1..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..1. .0..1..0..1
A297855
Number of nX5 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
3, 23, 21, 53, 45, 81, 130, 186, 203, 313, 533, 737, 1132, 1722, 2282, 3719, 5672, 8216, 12567, 18631, 27784, 41385, 63526, 95485, 142633, 216863, 319973, 486432, 733798, 1104890, 1675037, 2510078, 3780690, 5691817, 8606387, 13011832, 19628345
Offset: 1
Some solutions for n=7
..0..1..1..1..1. .0..1..0..1..1. .0..1..1..1..0. .0..1..0..1..1
..1..0..0..0..0. .0..1..0..0..1. .1..0..0..0..1. .1..0..0..1..0
..0..1..0..0..1. .1..1..1..1..1. .0..0..1..0..0. .0..1..1..1..0
..1..1..1..1..1. .0..0..1..0..0. .1..1..0..1..1. .1..0..1..0..1
..0..0..1..0..0. .1..0..1..0..1. .1..0..1..0..1. .1..0..1..0..1
..1..0..1..0..1. .0..1..0..0..1. .1..1..0..1..1. .1..0..1..0..1
..1..0..0..0..1. .1..1..0..1..0. .0..0..1..0..0. .1..0..1..0..1
A297856
Number of nX6 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
5, 49, 33, 90, 81, 131, 146, 252, 320, 522, 705, 1188, 1654, 2554, 4086, 6240, 9384, 14677, 22912, 34760, 54598, 85044, 131603, 204203, 317467, 494005, 767077, 1194926, 1861059, 2894147, 4502964, 7013005, 10913427, 17000934, 26479606
Offset: 1
Some solutions for n=7
..0..0..1..0..0..1. .0..1..0..1..0..0. .0..0..0..1..1..1. .0..0..1..0..1..0
..1..0..1..1..1..1. .0..1..0..1..1..1. .0..1..0..1..0..1. .1..1..0..1..0..0
..0..1..0..1..0..0. .1..1..1..0..1..0. .0..0..1..0..1..1. .1..0..1..0..1..1
..1..1..0..1..0..1. .0..0..1..0..1..0. .1..1..0..1..0..0. .1..1..1..0..0..0
..0..0..0..0..1..0. .1..1..1..0..1..0. .1..0..1..0..1..0. .0..0..0..0..1..1
..1..0..1..1..0..1. .0..1..0..1..1..1. .1..1..0..1..0..0. .1..1..1..0..1..0
..1..0..1..0..1..0. .0..1..0..1..0..0. .0..0..1..0..1..1. .0..0..0..1..0..1
A297857
Number of nX7 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
8, 95, 53, 145, 130, 146, 181, 289, 294, 594, 711, 1167, 1681, 2374, 3827, 6129, 8841, 14042, 20888, 31498, 51865, 82514, 125083, 194859, 300754, 471476, 758967, 1198480, 1863140, 2913216, 4550700, 7227150, 11533654, 18154246, 28482607
Offset: 1
Some solutions for n=7
..0..1..0..1..0..1..0. .0..1..0..1..0..1..0. .0..1..0..0..0..1..0
..0..1..0..1..1..0..1. .0..1..0..1..0..1..0. .0..1..1..1..1..1..0
..1..1..1..0..1..0..0. .0..1..0..1..0..1..0. .1..1..0..0..0..1..1
..0..0..1..0..1..1..1. .0..1..0..1..0..1..0. .0..0..1..1..1..0..0
..1..0..1..1..0..1..0. .0..1..0..1..0..1..0. .1..0..0..0..0..0..1
..0..1..0..1..0..1..0. .1..0..0..0..1..1..1. .1..0..1..1..1..0..1
..0..1..1..1..0..1..0. .0..1..1..0..1..0..0. .0..1..0..0..0..1..0
A297851
Number of n X n 0..1 arrays with every element equal to 1, 2 or 4 king-move adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 3, 15, 30, 45, 131, 181, 298, 430, 1022, 1429, 2164, 2135, 4620, 3680, 9110, 11981, 9540, 87199, 22330, 77938, 182912, 34081
Offset: 1
Some solutions for n=7
..0..0..1..1..1..0..1. .0..0..1..1..0..1..0. .0..1..1..0..0..1..1
..1..1..0..0..0..1..0. .1..1..0..0..1..0..0. .1..0..0..1..1..0..0
..0..1..1..1..1..1..0. .0..0..0..1..0..1..1. .0..1..0..0..0..0..1
..0..1..0..0..0..1..1. .1..1..0..1..0..0..0. .0..1..0..1..1..0..1
..0..1..1..1..1..0..0. .0..1..0..0..1..0..1. .0..1..0..0..0..0..1
..1..1..0..0..0..0..1. .1..0..1..0..1..0..1. .1..0..0..1..1..0..0
..0..0..1..1..1..0..1. .1..0..0..0..1..0..1. .0..1..1..0..0..1..1
Showing 1-7 of 7 results.
Comments