A298055 T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 4 or 6 king-move adjacent elements, with upper left element zero.
0, 1, 1, 1, 3, 1, 2, 7, 7, 2, 3, 13, 15, 13, 3, 5, 23, 19, 19, 23, 5, 8, 49, 23, 40, 23, 49, 8, 13, 95, 34, 73, 73, 34, 95, 13, 21, 177, 63, 141, 121, 141, 63, 177, 21, 34, 359, 96, 240, 231, 231, 240, 96, 359, 34, 55, 705, 147, 428, 422, 512, 422, 428, 147, 705, 55, 89, 1351, 233
Offset: 1
Examples
Some solutions for n=5, k=4 ..0..1..0..0. .0..1..1..1. .0..0..0..1. .0..0..1..0. .0..1..1..1 ..1..0..1..1. .1..0..0..0. .1..1..1..1. .1..0..1..0. .0..0..0..0 ..1..0..0..0. .0..0..1..0. .0..1..1..1. .1..0..0..1. .0..0..0..1 ..0..1..0..1. .1..1..0..0. .1..0..1..0. .0..1..0..1. .1..0..1..0 ..0..1..0..1. .1..0..1..1. .1..0..1..0. .0..1..0..0. .1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..337
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-3) -10*a(n-4) +4*a(n-5) for n>6
k=3: [order 18] for n>19
k=4: [order 72] for n>73
Comments