cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297898 Triangle read by rows, T(n, k) = (-1)^(n-k)*binomial(n,k)*hypergeom([k - n, n + 1], k + 1, 2), for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 13, 4, 1, 63, 19, 5, 1, 321, 96, 26, 6, 1, 1683, 501, 138, 34, 7, 1, 8989, 2668, 743, 190, 43, 8, 1, 48639, 14407, 4043, 1059, 253, 53, 9, 1, 265729, 78592, 22180, 5908, 1462, 328, 64, 10, 1, 1462563, 432073, 122468, 33028, 8378, 1966, 416, 76, 11, 1
Offset: 0

Views

Author

Peter Luschny, Jan 08 2018

Keywords

Examples

			Triangle starts:
[0]    1
[1]    3,    1
[2]   13,    4,   1
[3]   63,   19,   5,   1
[4]  321,   96,  26,   6,  1
[5] 1683,  501, 138,  34,  7, 1
[6] 8989, 2668, 743, 190, 43, 8, 1
		

Crossrefs

T(n, 0) = A001850(n).
Row sums are A050146(n+1).

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 1, 2];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n + j, j], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, Jan 14 2024 *)

Formula

T(n, k) = Sum_{j=0..n - k} binomial(n - k, j)*binomial(n + j, j). - Detlef Meya, Jan 14 2024