cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297928 a(n) = 2*4^n + 3*2^n - 1.

Original entry on oeis.org

4, 13, 43, 151, 559, 2143, 8383, 33151, 131839, 525823, 2100223, 8394751, 33566719, 134242303, 536920063, 2147581951, 8590131199, 34360131583, 137439739903, 549757386751, 2199026401279, 8796099313663, 35184384671743, 140737513521151, 562950003752959, 2251799914348543
Offset: 0

Views

Author

Iain Fox, Jan 08 2018

Keywords

Comments

For n > 0, in binary, this is a 1 followed by n-1 0's followed by 10 followed by n 1's.

Examples

			a(0) = 2*4^0 + 3*2^0 - 1 = 4;   in binary, 100.
a(1) = 2*4^1 + 3*2^1 - 1 = 13;  in binary, 1101.
a(2) = 2*4^2 + 3*2^2 - 1 = 43;  in binary, 101011.
a(3) = 2*4^3 + 3*2^3 - 1 = 151; in binary, 10010111.
a(4) = 2*4^4 + 3*2^4 - 1 = 559; in binary, 1000101111.
...
		

Crossrefs

A lower bound for A296807.

Programs

  • Mathematica
    Table[2 4^n+3 2^n-1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{4,13,43},30] (* Harvey P. Dale, Apr 22 2018 *)
  • PARI
    a(n) = 2*4^n + 3*2^n - 1
    
  • PARI
    first(n) = Vec((4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^n))

Formula

G.f.: (4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)).
E.g.f.: 2*e^(4*x) + 3*e^(2*x) - e^x.
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3), n > 2.
a(n) = A000918(n) + A085601(n).