A297928 a(n) = 2*4^n + 3*2^n - 1.
4, 13, 43, 151, 559, 2143, 8383, 33151, 131839, 525823, 2100223, 8394751, 33566719, 134242303, 536920063, 2147581951, 8590131199, 34360131583, 137439739903, 549757386751, 2199026401279, 8796099313663, 35184384671743, 140737513521151, 562950003752959, 2251799914348543
Offset: 0
Examples
a(0) = 2*4^0 + 3*2^0 - 1 = 4; in binary, 100. a(1) = 2*4^1 + 3*2^1 - 1 = 13; in binary, 1101. a(2) = 2*4^2 + 3*2^2 - 1 = 43; in binary, 101011. a(3) = 2*4^3 + 3*2^3 - 1 = 151; in binary, 10010111. a(4) = 2*4^4 + 3*2^4 - 1 = 559; in binary, 1000101111. ...
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-14,8)
Programs
-
Mathematica
Table[2 4^n+3 2^n-1,{n,0,30}] (* or *) LinearRecurrence[{7,-14,8},{4,13,43},30] (* Harvey P. Dale, Apr 22 2018 *)
-
PARI
a(n) = 2*4^n + 3*2^n - 1
-
PARI
first(n) = Vec((4 - 15*x + 8*x^2)/((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^n))
Comments