cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298024 Expansion of (x^4+3*x^3+6*x^2+3*x+1)/((1-x)*(1-x^3)).

Original entry on oeis.org

1, 4, 10, 14, 18, 24, 28, 32, 38, 42, 46, 52, 56, 60, 66, 70, 74, 80, 84, 88, 94, 98, 102, 108, 112, 116, 122, 126, 130, 136, 140, 144, 150, 154, 158, 164, 168, 172, 178, 182, 186, 192, 196, 200, 206, 210, 214, 220, 224, 228, 234, 238, 242, 248, 252, 256, 262
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Coordination sequence for Dual(3^3.4^2) tiling with respect to a tetravalent node. This tiling is also called the prismatic pentagonal tiling, or the cem-d net. It is one of the 11 Laves tilings. (The identification of this coordination sequence with the g.f. in the definition was first conjectured by Colin Barker, Jan 22 2018.)
Also, coordination sequence for a tetravalent node in the "krl" 2-D tiling (or net).
Both of these identifications are easily established using the "coloring book" method - see the Goodman-Strauss & Sloane link.
For n>0, this is twice A047386 (numbers congruent to 0 or +-2 mod 7).
Linear recurrence and g.f. confirmed by Shutov/Maleev link. - Ray Chandler, Aug 31 2023

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Table 2.2.1, page 66, 3rd row, second tiling. (For the krl tiling.)
  • B. Gruenbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987. See p. 96. (For the Dual(3^3.4^2) tiling.)

Crossrefs

Cf. A301298.
See A298025 for partial sums, A298022 for a trivalent node.
See also A047486.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    CoefficientList[Series[(x^4+3x^3+6x^2+3x+1)/((1-x)(1-x^3)),{x,0,60}],x] (* or *) LinearRecurrence[{1,0,1,-1},{1,4,10,14,18},80] (* Harvey P. Dale, Oct 03 2018 *)
  • PARI
    See Links section.

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (Conjectured, correctly, by Colin Barker, Jan 22 2018.)

Extensions

More terms from Rémy Sigrist, Jan 21 2018
Entry revised by N. J. A. Sloane, Mar 25 2018