A298027 Partial sums of A298026.
1, 7, 13, 31, 43, 73, 91, 133, 157, 211, 241, 307, 343, 421, 463, 553, 601, 703, 757, 871, 931, 1057, 1123, 1261, 1333, 1483, 1561, 1723, 1807, 1981, 2071, 2257, 2353, 2551, 2653, 2863, 2971, 3193, 3307, 3541, 3661, 3907, 4033, 4291, 4423, 4693, 4831, 5113, 5257, 5551, 5701, 6007, 6163, 6481
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Cf. A298026.
Programs
-
Maple
seq((4+6*n+9*n^2+(3+6*n)*(n mod 2))/4, n=0..100); # Robert Israel, Jan 21 2018
-
Mathematica
Sort[Table[9 m^2 + 3 m + 1, {m, -20, 20}]] (* Greg Dresden, Jul 02 2018 *) Accumulate[LinearRecurrence[{0,2,0,-1},{1,6,6,18,12},80]] (* Harvey P. Dale, Oct 02 2020 *)
Formula
From Robert Israel, Jan 21 2018: (Start)
G.f.: (1+6*x+4*x^2+6*x^3+x^4)/((1+x)^2*(1-x)^3).
a(n) = (4+6*n+9*n^2)/4 if n is even, (7+12*n+9*n^2)/4 if n is odd. (End)
Sequence equals values of 9m^2 + 3m + 1 for m = 0, -1, 1, -2, 2, -3, 3, ... . - Greg Dresden, Jul 02 2018