cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298030 Partial sums of A298029.

Original entry on oeis.org

1, 4, 10, 22, 40, 73, 112, 163, 220, 289, 364, 451, 544, 649, 760, 883, 1012, 1153, 1300, 1459, 1624, 1801, 1984, 2179, 2380, 2593, 2812, 3043, 3280, 3529, 3784, 4051, 4324, 4609, 4900, 5203, 5512, 5833, 6160, 6499, 6844, 7201, 7564, 7939, 8320, 8713, 9112, 9523, 9940, 10369, 10804, 11251, 11704
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Crossrefs

Cf. A298029.

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1},{1,4,10,22,40,73,112,163},60] (* Harvey P. Dale, Jul 17 2025 *)
  • PARI
    Vec((1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 9*x^5 - 3*x^7) / ((1 - x)^3*(1 + x)) + O(x^50)) \\ Colin Barker, Jan 25 2018

Formula

G.f.: -(3*x^7 - 9*x^5 - 3*x^4 - 4*x^3 - 2*x^2 - 2*x - 1)/((1 - x)^2*(1 - x^2)).
From Colin Barker, Jan 25 2018: (Start)
a(n) = (9*n^2 - 18*n + 8) / 2 for n>3 and even.
a(n) = (9*n^2 - 18*n + 11) / 2 for n>3 and odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)
E.g.f.: ((8 - 9*x + 9*x^2)*cosh(x) + (11 - 9*x + 9*x^2)*sinh(x) - 6 + 6*x + 6*x^2 + x^3)/2. - Stefano Spezia, Aug 19 2023