A298030 Partial sums of A298029.
1, 4, 10, 22, 40, 73, 112, 163, 220, 289, 364, 451, 544, 649, 760, 883, 1012, 1153, 1300, 1459, 1624, 1801, 1984, 2179, 2380, 2593, 2812, 3043, 3280, 3529, 3784, 4051, 4324, 4609, 4900, 5203, 5512, 5833, 6160, 6499, 6844, 7201, 7564, 7939, 8320, 8713, 9112, 9523, 9940, 10369, 10804, 11251, 11704
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Cf. A298029.
Programs
-
Mathematica
LinearRecurrence[{2,0,-2,1},{1,4,10,22,40,73,112,163},60] (* Harvey P. Dale, Jul 17 2025 *)
-
PARI
Vec((1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 9*x^5 - 3*x^7) / ((1 - x)^3*(1 + x)) + O(x^50)) \\ Colin Barker, Jan 25 2018
Formula
G.f.: -(3*x^7 - 9*x^5 - 3*x^4 - 4*x^3 - 2*x^2 - 2*x - 1)/((1 - x)^2*(1 - x^2)).
From Colin Barker, Jan 25 2018: (Start)
a(n) = (9*n^2 - 18*n + 8) / 2 for n>3 and even.
a(n) = (9*n^2 - 18*n + 11) / 2 for n>3 and odd.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5. (End)
E.g.f.: ((8 - 9*x + 9*x^2)*cosh(x) + (11 - 9*x + 9*x^2)*sinh(x) - 6 + 6*x + 6*x^2 + x^3)/2. - Stefano Spezia, Aug 19 2023