cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298087 T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 2, 0, 2, 0, 0, 11, 3, 3, 11, 0, 0, 13, 1, 10, 1, 13, 0, 0, 34, 7, 28, 28, 7, 34, 0, 0, 65, 18, 76, 154, 76, 18, 65, 0, 0, 123, 52, 213, 520, 520, 213, 52, 123, 0, 0, 266, 144, 645, 1574, 2767, 1574, 645, 144, 266, 0, 0, 499, 405, 1852, 7204, 11202
Offset: 1

Views

Author

R. H. Hardin, Jan 12 2018

Keywords

Comments

Table starts
.0...0...0....0.....0......0.......0........0.........0..........0...........0
.0...1...3....2....11.....13......34.......65.......123........266.........499
.0...3...0....3.....1......7......18.......52.......144........405........1124
.0...2...3...10....28.....76.....213......645......1852.......5642.......17016
.0..11...1...28...154....520....1574.....7204.....28790.....105055......437163
.0..13...7...76...520...2767...11202....66148....385999....2040394....11280309
.0..34..18..213..1574..11202...65218...479206...3481050...24695892...177272585
.0..65..52..645..7204..66148..479206..4883926..46039875..420410890..3947485108
.0.123.144.1852.28790.385999.3481050.46039875.603770100.7267200831.90210295443

Examples

			Some solutions for n=7 k=4
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
..0..1..0..1. .0..1..0..1. .1..0..1..1. .0..1..0..1. .0..1..1..0
..1..1..0..1. .1..0..0..1. .1..1..1..1. .1..0..1..0. .1..0..1..0
..0..0..1..1. .0..1..0..1. .0..0..1..1. .1..0..1..0. .1..0..1..0
..0..0..0..0. .0..1..1..1. .0..1..0..0. .1..0..1..0. .1..0..1..0
..0..0..1..0. .1..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1
..0..0..1..1. .1..1..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1
		

Crossrefs

Column 2 is A297870.

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4)
k=3: [order 16] for n>17
k=4: [order 57] for n>58