cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303048 Number of total dominating sets in the n-triangular (Johnson) graph.

Original entry on oeis.org

0, 4, 54, 918, 31232, 2059624, 266734812, 68574627036, 35160753222400, 36021330363615408, 73782362964470935112, 302225854825997535378632, 2475866675779140063716682240, 40564755806137338166417907530592, 1329227401912999475682655581004557840
Offset: 2

Views

Author

Eric W. Weisstein, Apr 17 2018

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[(-1)^(n - k) Binomial[n, k] 2^Binomial[k, 2], {k, 0, n}]
    Table[Sum[(-1)^k Binomial[n, 2 k] (2 k)!/(2^k k!) (b[n - 2 k] + (n - 2 k) b[n - 2 k - 1]), {k, 0, Floor[n/2]}], {n, 2, 20}]
  • PARI
    \\ here b(n) is A006129
    b(n)=sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2));
    a(n)=sum(k=0, n\2, (-1)^k*binomial(n,2*k)*(2*k)!/(2^k*k!)*(b(n-2*k) + (n-2*k)*b(n-2*k-1))); \\ Andrew Howroyd, Apr 20 2018

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*(2*k-1)!!*A290847(n-2*k). - Andrew Howroyd, Apr 20 2018

Extensions

a(8)-a(16) from Andrew Howroyd, Apr 20 2018

A323499 Number of minimum dominating sets in the n-triangular (Johnson) graph.

Original entry on oeis.org

1, 3, 15, 15, 195, 105, 2625, 945, 38745, 10395, 634095, 135135, 11486475, 2027025, 229053825, 34459425, 4996616625, 654729075, 118505962575, 13749310575, 3038597637075, 316234143225, 83802047954625, 7905853580625, 2474532170735625, 213458046676875
Offset: 2

Views

Author

Eric W. Weisstein, Jan 16 2019

Keywords

Crossrefs

Programs

  • PARI
    a(n)={my(m=(n+1)\2); ((2*m)!/(m!*2^m))*if(n%2, 1, 1 + n*(n/2-1))} \\ Andrew Howroyd, Sep 08 2019

Formula

a(n) = n!! for n odd.
a(n) = (n-1)!!*(1 + n*(n/2 - 1)) for n even. - Andrew Howroyd, Sep 08 2019

Extensions

Terms a(14) and beyond from Andrew Howroyd, Sep 08 2019
Showing 1-2 of 2 results.