cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298250 The first of three consecutive pentagonal numbers the sum of which is equal to the sum of three consecutive primes.

Original entry on oeis.org

176, 35497, 45850, 68587, 87725, 229126, 488776, 705551, 827702, 1085876, 1127100, 1255380, 1732900, 1914785, 1972840, 2453122, 2737126, 2749297, 2818776, 3245026, 4598126, 5116190, 5522882, 6180335, 6658120, 6939126, 6958497, 7088327, 7114437, 7140595
Offset: 1

Views

Author

Colin Barker, Jan 15 2018

Keywords

Examples

			176 is in the sequence because 176+210+247 (consecutive pentagonal numbers) = 633 = 199+211+223 (consecutive primes).
		

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms where the sums <= N
    Res:= NULL:
    mmax:= floor((sqrt(8*N-23)-5)/6):
    M:= [seq(seq(4*i+j,j=2..3),i=0..mmax/4)]:
    M3:= map(m -> 9/2*m^2+15/2*m+6, M):
    for i from 1 to nops(M) do
    m:= M3[i];
      r:= ceil((m-8)/3);
      p1:= prevprime(r+1);
      p2:= nextprime(p1);
      p3:= nextprime(p2);
      while p1+p2+p3 > m do
        p3:= p2; p2:= p1; p1:= prevprime(p1);
      od:
      if p1+p2+p3 = m then
        Res:= Res, M[i]*(3*M[i]-1)/2;
      fi
    od:
    Res; # Robert Israel, Jan 16 2018
  • Mathematica
    Module[{prs3=Total/@Partition[Prime[Range[10^6]],3,1]},Select[ Partition[ PolygonalNumber[ 5,Range[ 5000]],3,1],MemberQ[ prs3,Total[#]]&]][[All,1]] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, (3*u^2-u)/2))); Vec(L)