A298250 The first of three consecutive pentagonal numbers the sum of which is equal to the sum of three consecutive primes.
176, 35497, 45850, 68587, 87725, 229126, 488776, 705551, 827702, 1085876, 1127100, 1255380, 1732900, 1914785, 1972840, 2453122, 2737126, 2749297, 2818776, 3245026, 4598126, 5116190, 5522882, 6180335, 6658120, 6939126, 6958497, 7088327, 7114437, 7140595
Offset: 1
Keywords
Examples
176 is in the sequence because 176+210+247 (consecutive pentagonal numbers) = 633 = 199+211+223 (consecutive primes).
Links
- Robert Israel, Table of n, a(n) for n = 1..2352
Programs
-
Maple
N:= 10^8: # to get all terms where the sums <= N Res:= NULL: mmax:= floor((sqrt(8*N-23)-5)/6): M:= [seq(seq(4*i+j,j=2..3),i=0..mmax/4)]: M3:= map(m -> 9/2*m^2+15/2*m+6, M): for i from 1 to nops(M) do m:= M3[i]; r:= ceil((m-8)/3); p1:= prevprime(r+1); p2:= nextprime(p1); p3:= nextprime(p2); while p1+p2+p3 > m do p3:= p2; p2:= p1; p1:= prevprime(p1); od: if p1+p2+p3 = m then Res:= Res, M[i]*(3*M[i]-1)/2; fi od: Res; # Robert Israel, Jan 16 2018
-
Mathematica
Module[{prs3=Total/@Partition[Prime[Range[10^6]],3,1]},Select[ Partition[ PolygonalNumber[ 5,Range[ 5000]],3,1],MemberQ[ prs3,Total[#]]&]][[All,1]] (* Harvey P. Dale, Dec 25 2022 *)
-
PARI
L=List(); forprime(p=2, 8000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(72*t-207, &sq) && (sq-15)%18==0, u=(sq-15)\18; listput(L, (3*u^2-u)/2))); Vec(L)