A298262 Number of integer partitions of n using relatively prime non-divisors of n.
0, 0, 0, 0, 1, 0, 3, 1, 3, 2, 13, 1, 23, 7, 10, 8, 65, 5, 104, 11, 53, 53, 252, 8, 244, 124, 203, 67, 846, 22, 1237, 157, 636, 569, 1074, 51, 3659, 1140, 1827, 221, 7244, 236, 10086, 1162, 1844, 4169, 19195, 225, 17657, 2997
Offset: 1
Keywords
Examples
The a(11) = 13 partitions: (65), (74), (83), (92), (443), (533), (542), (632), (722), (3332), (4322), (5222), (32222). The a(14) = 7 partitions: (9 5), (11 3), (5 5 4), (6 5 3), (8 3 3), (4 4 3 3), (5 3 3 3).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],And[GCD@@#===1,!Or@@(Divisible[n,#]&/@#)]&]],{n,50}]
-
PARI
\\ here b(n) is A098743. b(n)={polcoef(1/prod(k=1, n, if(n%k, 1 - x^k, 1) + O(x*x^n)), n)} a(n)={sumdiv(n, d, moebius(d)*b(n/d))} \\ Andrew Howroyd, Aug 29 2018
Formula
a(n) = Sum_{d|n} mu(n/d) * A098743(d).