A298299 a(n) is the smallest b > 0 such that b^(2n) + 1 has all prime divisors p == 1 (mod 2n).
2, 2, 6, 2, 10, 6, 14, 2, 36, 20, 66, 18, 26, 28, 120, 2, 170, 6, 570, 140, 2184, 88, 184, 42, 110, 312, 1440, 42, 116, 9060, 124, 2, 7656, 34, 13650, 132, 74, 228, 7800, 40, 1066, 4158, 430, 132, 6283590, 46, 94, 12, 1246, 1960
Offset: 1
Examples
a(5) = 10, because 10^10 + 1 = 10000000001 = 101*3541*27961 and all the prime factors p == 1 (mod 2*5), so all divisors d == 1 (mod 10).
Links
- Kevin P. Thompson, Factorizations to support known terms of a(n) for n = 1..56
Programs
-
PARI
find_a_ORDOWSKI2(n=2, a=1, B_START=2, LIM=10^11,DEBUG=1)={ my(B,FF,LL); my(fn="_THOMAS_ORDOWSKI_b_a_n.txt"); LL=R2('b,a,n); \\ R(b,a,n)=(b^n+a) FF=factor(LL); if(DEBUG==1, print(FF); print(LL); ); if(Mod(n,2)==0, \\ n-EVEN B=FIND_BASE(n,BSTART=B_START,LIM,STEP=2,FF); ); if(B>0, return([n,B,[subst(FF,'b,B)]]); ); return(0); }
Formula
a(n) = min{b > 1: for all prime p, if p | (b^(2n) + 1) then p == 1 (mod 2n)}.
Extensions
a(31)-a(44) from Kevin P. Thompson, Mar 13 2022
a(45)-a(50) from Daniel Suteu, Jul 01 2022
Comments