cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298311 Expansion of Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).

Original entry on oeis.org

1, 3, 7, 16, 32, 61, 112, 197, 336, 560, 912, 1456, 2287, 3536, 5392, 8123, 12096, 17824, 26016, 37632, 53984, 76848, 108601, 152432, 212592, 294704, 406201, 556864, 759488, 1030784, 1392496, 1872784, 2508048, 3345184, 4444384, 5882747, 7758736, 10197712, 13358944, 17444256, 22708719
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 17 2018

Keywords

Comments

Number of partitions of n where there are 3 kinds of odd parts.
Convolution of the sequences A000009 and A015128.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/((1 - x^(2 k)) (1 - x^(2 k - 1))^3), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)^2/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 - x^(2*k-1))^3).
G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^k).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (2^(5/2)*sqrt(3)*n). - Vaclav Kotesovec, Apr 08 2018
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 4. Cf. A000041 (k = 1), A015128 (k = 2), A278690 (k = 3) and A160461 (k = 5). - Peter Bala, Nov 17 2020