cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A298313 The first of three consecutive primes the sum of which is equal to the sum of three consecutive octagonal numbers.

Original entry on oeis.org

12541, 75521, 159617, 182519, 271181, 373091, 603901, 609289, 851197, 983819, 1246757, 2079997, 3299081, 3687421, 4484737, 4692497, 5636171, 7514477, 8273437, 9299831, 10408577, 10430921, 10746557, 10769281, 12739037, 13012487, 14213621, 15440531, 15713959
Offset: 1

Views

Author

Colin Barker, Jan 17 2018

Keywords

Examples

			12541 is in the sequence because 12541+12547+12553 (consecutive primes) = 37641 = 12160+12545+12936 (consecutive octagonal numbers).
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=5000,oct3},oct3=Total/@Partition[PolygonalNumber[8,Range[nn]],3,1];Select[ Partition[Prime[Range[PrimePi[Ceiling[Max[oct3]/3]]]],3,1],MemberQ[ oct3,Total[ #]]&]][[All,1]] (* Harvey P. Dale, Dec 03 2022 *)
  • PARI
    L=List(); forprime(p=2, 20000000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(36*t-180, &sq) && (sq-12)%18==0, u=(sq-12)\18; listput(L, p))); Vec(L)
    
  • Python
    from _future_ import division
    from sympy import prevprime, nextprime
    A298313_list, n, m = [], 1, 30
    while len(A298313_list) < 10000:
        k = prevprime(m//3)
        k2 = prevprime(k)
        k3 = nextprime(k)
        if k2 + k + k3 == m:
            A298313_list.append(k2)
        elif k + k3 + nextprime(k3) == m:
            A298313_list.append(k)
        n += 1
        m += 18*n + 3 # Chai Wah Wu, Jan 22 2018
Showing 1-1 of 1 results.