A298359 Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, Sum_{k = 1..n} 10^(k-1) * a(k) can be computed without carry in decimal base.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 19, 37, 46, 55, 64, 73, 82, 91, 110, 28, 56, 74
Offset: 1
Examples
The first terms, alongside 10^(n-1) * a(n), are: n a(n) 10^(n-1) * a(n) -- ---- ------------------- 1 1 1 2 2 20 3 3 300 4 4 4000 5 5 50000 6 6 600000 7 7 7000000 8 8 80000000 9 9 900000000 10 10 10000000000 11 11 110000000000 12 12 1200000000000 13 13 13000000000000 14 14 140000000000000 15 15 1500000000000000 16 16 16000000000000000 17 17 170000000000000000 18 18 1800000000000000000 19 20 20000000000000000000 20 21 210000000000000000000 The terms on the third column can be summed without carry in decimal base.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, PARI program for A298359
Programs
-
PARI
See Links section.
Comments