cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298360 Numbers congruent to {3, 7, 13, 27} mod 30.

Original entry on oeis.org

3, 7, 13, 27, 33, 37, 43, 57, 63, 67, 73, 87, 93, 97, 103, 117, 123, 127, 133, 147, 153, 157, 163, 177, 183, 187, 193, 207, 213, 217, 223, 237, 243, 247, 253, 267, 273, 277, 283, 297, 303, 307, 313, 327, 333, 337, 343, 357, 363, 367, 373, 387, 393, 397, 403
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 05 2018

Keywords

Comments

For any m >= 0, if F(m) = 2^(2^m) + 1 has a factor of the form b = a(n)*2^k + 1 with even k >= m + 2 and n >= 1, then the cofactor of F(m) is equal to F(m)/b = j*2^k + 1, where j is congruent to 7 mod 10 if n is odd, or j is congruent to 3 mod 10 if n is even. That is, the integer a(n) + j must be divisible by 10.

Examples

			37 belongs to this sequence and d = 37*2^16 + 1 is a divisor of F(9) = 2^(2^9) + 1, so 10 | (37 + (F(9)/d - 1)/2^16).
		

Crossrefs

Subsequence of A063226.

Programs

  • Magma
    [n: n in [0..403] | n mod 30 in {3, 7, 13, 27}];
    
  • Mathematica
    LinearRecurrence[{1, 0, 0, 1, -1}, {3, 7, 13, 27, 33}, 60]
    CoefficientList[ Series[(3 + 4x + 6x^2 + 14x^3 + 3x^4)/((-1 + x)^2 (1 + x + x^2 + x^3)), {x, 0, 54}], x] (* Robert G. Wilson v, Feb 08 2018 *)
    Select[Range[500],MemberQ[{3,7,13,27},Mod[#,30]]&] (* Harvey P. Dale, Nov 15 2024 *)
  • PARI
    Vec(x*(3 + 4*x + 6*x^2 + 14*x^3 + 3*x^4)/((1 + x)*(1 + x^2)*(1 - x)^2 + O(x^55)))

Formula

a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = a(n-4) + 30.
G.f.: x*(3 + 4*x + 6*x^2 + 14*x^3 + 3*x^4)/((1 + x)*(1 + x^2)*(1 - x)^2).