cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298368 Triangle read by rows: T(n, k) = floor((n-1)/2)*floor(n/2)*floor((k-1)/2)*floor(k/2).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 2, 4, 0, 0, 4, 8, 16, 0, 0, 6, 12, 24, 36, 0, 0, 9, 18, 36, 54, 81, 0, 0, 12, 24, 48, 72, 108, 144, 0, 0, 16, 32, 64, 96, 144, 192, 256, 0, 0, 20, 40, 80, 120, 180, 240, 320, 400, 0, 0, 25, 50, 100, 150, 225, 300, 400, 500, 625
Offset: 1

Views

Author

Eric W. Weisstein, Jan 17 2018

Keywords

Comments

T(n, k) is conjectured by Zarankiewicz's conjecture to be the crossing number of the complete bipartite graph K_{k,n}.

Examples

			First rows are given by:
  0;
  0,   0;
  0,   0,   1;
  0,   0,   2,   4;
  0,   0,   4,   8,  16;
  0,   0,   6,  12,  24,  36;
  0,   0,   9,  18,  36,  54,  81;
  0,   0,  12,  24,  48,  72, 108, 144;
  0,   0,  16,  32,  64,  96, 144, 192, 256;
  0,   0,  20,  40,  80, 120, 180, 240, 320, 400;
		

Crossrefs

Programs

  • Maple
    seq(seq(floor((k-1)/2)*floor(k/2)*floor((n-1)/2)*floor(n/2),k=1..n),n=1..12); # Robert Israel, Jan 17 2018
  • Mathematica
    Table[Floor[(m - 1)/2] Floor[m/2] Floor[(n - 1)/2] Floor[n/2], {n, 11}, {m, n}] // Flatten
    Table[Times @@ Floor[{m, m - 1, n, n - 1}/2], {n, 11}, {m, n}] // Flatten

Formula

T(n,n) = A030179(n).
From Robert Israel, Jan 17 2018: (Start)
T(n,k) = A002620(n-1)*A002620(k-1).
G.f. as triangle: x^3*y^3*(1+2*x*y+6*x^2*y^2-4*x^3*y-8*x^3*y^2+2*x^4*y+2*x^3*y^3-4*x^4*y^2-2*x^4*y^3+4*x^5*y^2+ x^4*y^4-4*x^5*y^3-2*x^5*y^4+4*x^6*y^3+2*x^7*y^4)/
((1-x*y)^5*(1+x*y)^3*(1-x)^3*(1+x)). (End)