cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298411 Coefficients of q^(-1/24)*eta(4q)^(1/2).

Original entry on oeis.org

1, -2, -10, -20, -90, 132, -836, 6040, 2310, 60180, 180308, 1662568, -2995620, 24401320, 44072120, -102437328, 19390406, 2649221300, -10584460060, 14475802440, -228570333836, -815899620616, 2088529753800, -5590702681520, -100828534100580, -172013432412024
Offset: 0

Views

Author

William J. Keith, Jan 18 2018

Keywords

Comments

The q^(kn) term of any single factor of the product (1-(4q)^k)^(1/2) is (-2)*A000108(n-1). Hence these numbers are related to the Catalan numbers A000108 by a partition-based convolution.
Sequence appears to be positive and negative roughly half the time.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1/2, g(n) = 4^n. - Seiichi Manyama, Apr 20 2018

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(1/b): A010815 (b=1), this sequence (b=2), A303152 (b=3), A303153 (b=4), A303154 (b=5).

Programs

  • Mathematica
    Series[Product[(1 - (4 q)^k)^(1/2), {k, 1, 100}], {q, 0, 100}]
  • PARI
    q='q+O('q^99); Vec(eta(4*q)^(1/2)) \\ Altug Alkan, Apr 20 2018

Formula

G.f.: Product_{k>=1} (1 - (4x)^k)^(1/2).