A298463 The first of two consecutive pentagonal numbers the sum of which is equal to the sum of two consecutive primes.
70, 3577, 10795, 36895, 55777, 70525, 78547, 125137, 178365, 208507, 258130, 329707, 349692, 394497, 438751, 468442, 478555, 499105, 619852, 663005, 753667, 827702, 877455, 900550, 1025480, 1085876, 1169092, 1201090, 1211852, 1233520, 1339065, 1508512
Offset: 1
Keywords
Examples
70 is in the sequence because 70+92 (consecutive pentagonal numbers) = 162 = 79+83 (consecutive primes).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Partition[PolygonalNumber[5,Range[1500]],2,1],CompositeQ[Total[#]/2]&&Total[#] == NextPrime[ Total[#]/2]+NextPrime[Total[#]/2,-1]&][[;;,1]] (* Harvey P. Dale, Jan 20 2024 *)
-
PARI
L=List(); forprime(p=2, 1600000, q=nextprime(p+1); t=p+q; if(issquare(12*t-8, &sq) && (sq-2)%6==0, u=(sq-2)\6; listput(L, (3*u^2-u)/2))); Vec(L)
-
Python
from _future_ import division from sympy import prevprime, nextprime A298463_list, n, m = [], 1 ,6 while len(A298463_list) < 10000: k = prevprime(m//2) if k + nextprime(k) == m: A298463_list.append(n*(3*n-1)//2) n += 1 m += 6*n-1 # Chai Wah Wu, Jan 20 2018