A298473 a(n) = n * lambda(n) * 2^omega(n).
1, -4, -6, 8, -10, 24, -14, -16, 18, 40, -22, -48, -26, 56, 60, 32, -34, -72, -38, -80, 84, 88, -46, 96, 50, 104, -54, -112, -58, -240, -62, -64, 132, 136, 140, 144, -74, 152, 156, 160, -82, -336, -86, -176, -180, 184, -94, -192, 98, -200, 204, -208, -106, 216, 220, 224, 228, 232, -118, 480
Offset: 1
Examples
a(6) = a(2)*a(3) = (-4)*(-6) = 24 = 6*1*2^2; a(8) = a(2^3) = 2*(-2)^3 = -16 = 8*(-1)*2^1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t; mul(2*(-t[1])^t[2],t=ifactors(n)[2]) end proc: map(f, [$1..100]); # Robert Israel, Mar 06 2022
-
Mathematica
Array[# (-1)^PrimeOmega[#]*2^PrimeNu[#] &, 60] (* Michael De Vlieger, Jan 20 2018 *)
-
PARI
a(n) = n*(-1)^bigomega(n)*2^omega(n); \\ Michel Marcus, Jan 20 2018
Formula
Multiplicative with a(p^e) = 2*(-p)^e (p prime, e>0).
Dirichlet inverse of abs(a(n)).
Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1))^2.
O.g.f. for the unsigned sequence: Sum_{n >= 1} |a(n)|*x^n = Sum_{n >= 1} |mu(n)|*n*x^n/(1 - x^n)^2, where mu(n) = A008683(n) is the Möbius function. - Peter Bala, Mar 05 2022
Sum_{k=1..n} abs(a(k)) ~ 3*n^2/Pi^2 * (log(n) - 1/2 + 2*gamma - 12*zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 16 2025
Comments