cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298538 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 187
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
4  (oo)
5  (((o)))
7  ((oo))
8  (ooo)
9  ((o)(o))
11 ((((o))))
13 ((o(o)))
16 (oooo)
17 (((oo)))
19 ((ooo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
29 ((o((o))))
31 (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],SameQ@@MGweight/@primeMS[#]&]

A298479 Matula-Goebel numbers of rooted trees in which all positive outdegrees are different.

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 16, 19, 24, 28, 32, 38, 42, 48, 52, 53, 56, 57, 64, 68, 74, 84, 96, 104, 106, 107, 112, 128, 131, 134, 136, 152, 159, 163, 168, 178, 192, 208, 212, 224, 228, 256, 262, 263, 272, 296, 304, 311, 318, 336, 356, 384, 393, 416, 446, 448, 456
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
7  ((oo))
8  (ooo)
12 (oo(o))
16 (oooo)
19 ((ooo))
24 (ooo(o))
28 (oo(oo))
32 (ooooo)
38 (o(ooo))
42 (o(o)(oo))
48 (oooo(o))
52 (oo(o(o)))
53 ((oooo))
56 (ooo(oo))
57 ((o)(ooo))
64 (oooooo)
68 (oo((oo)))
74 (o(oo(o)))
84 (oo(o)(oo))
96 (ooooo(o))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    doQ[n_]:=Or[n===1,UnsameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],doQ]
Showing 1-2 of 2 results.