A298483 Numbers n, the smallest of three consecutive numbers that share the property mu(n) <> chi(n).
13, 25, 37, 61, 73, 109, 113, 117, 121, 153, 157, 169, 173, 181, 245, 257, 273, 277, 285, 289, 297, 313, 317, 325, 333, 353, 361, 369, 373, 385, 389, 401, 405, 409, 421, 425, 457, 509, 513, 525, 529, 541, 601, 609, 621, 637, 653, 673, 677, 693, 705, 709, 729, 733, 761, 765, 769, 777, 797, 801, 805, 829, 833, 841, 853
Offset: 1
Keywords
Examples
13 is in the sequence because mu(13)=-1 and chi(13)=1, mu(14)=1 and chi(14)=0, and mu(15)=1 and chi(15)=-1.
Programs
-
Mathematica
With[{nn = 10^3, w = {1, 0, -1, 0}}, Position[Map[UnsameQ @@ # & /@ # &, Partition[Transpose@ {Array[MoebiusMu, nn], Array[w[[Mod[#, 4, 1] ]] &, nn]}, 3, 1]], {True, True, True}]][[All, 1]] (* Michael De Vlieger, Jan 28 2018, after Michael Somos at A101455 *)
-
PARI
isok(n) = (moebius(n) != kronecker( -4, n)) && (moebius(n+1) != kronecker( -4, n+1)) && (moebius(n+2) != kronecker( -4, n+2)); \\ Michel Marcus, Jan 28 2018
Formula
0 < min({|mu(a(n))| + |chi(a(n))|, |mu(a(n) + 1)| + |chi(a(n) + 1)|, |mu(a(n) + 2)| + |chi(a(n) + 2)|}).
Comments