cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298567 a(n) = Sum_{k=0..2*n/3} C(n-k,2*k-n)^2.

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 2, 9, 10, 17, 37, 41, 102, 136, 251, 450, 667, 1325, 2011, 3658, 6246, 10293, 18686, 30461, 54183, 92169, 157438, 276414, 466579, 818256, 1400509, 2419379, 4202829, 7208342, 12556360, 21621891, 37480728, 64965461, 112227269
Offset: 0

Views

Author

Vladimir Kruchinin, Jan 21 2018

Keywords

Crossrefs

Cf. A182878.

Programs

  • Maple
    A298567 := proc(n)
        option remember;
        if n < 7 then
            op(n+1,[1, 0, 1, 1, 1, 4,2]) ;
        else
            -2*(n-1)*procname(n-2)-(2*n-3)*procname(n-3)+(n-2)*procname(n-4)
                -(2*n-5)*procname(n-5)+(n-3)*procname(n-6) ;
            -%/n ;
        end if;
    end proc: # R. J. Mathar, Jan 21 2020
  • Maxima
    a(n):=sum(binomial(n-k,2*k-n)^2,k,0,2*n/3);

Formula

G.f.: 1/sqrt((1-x^2)^2+x^6-2*x^5-2*x^3).
D-finite with recurrence: n*a(n) -2*(n-1)*a(n-2)-(2*n-3)*a(n-3)+(n-2)*a(n-4) -(2*n-5)*a(n-5) +(n-3)*a(n-6) = 0. - R. J. Mathar, Jan 21 2020