cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A387483 a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 2, 4, 4, 32, 24, 144, 304, 576, 2336, 3648, 13120, 30208, 70528, 218368, 456448, 1360896, 3316224, 8311808, 23127040, 54812672, 151197696, 380669952, 978595840, 2613067776, 6540566528, 17464705024, 44764708864, 116183662592, 305637064704, 783627386880
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2025

Keywords

Crossrefs

Cf. A298567.

Programs

  • Magma
    [(&+[2^(n-k)* Binomial(k,n-2*k)^2: k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[k,n-2*k]^2,{k,0,Floor[n/2]}],{n,0,40}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(k, n-2*k)^2);
    

Formula

G.f.: 1/sqrt((1-2*x^2-4*x^3)^2 - 32*x^5).

A375218 a(n) = Sum_{k=0..floor(n/2)} (k+1) * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 2, 2, 3, 12, 7, 36, 41, 84, 186, 230, 612, 852, 1733, 3198, 5112, 10628, 16873, 32562, 57463, 99892, 188103, 319188, 591982, 1040076, 1849352, 3351304, 5854119, 10610416, 18707180, 33370938, 59618393, 105291208, 188572347, 333462928, 593859439, 1055432400, 1870161060
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (k+1)*binomial(k, n-2*k)^2);

Formula

G.f.: (1-x^2-x^3)/((1-x^2-x^3)^2 - 4*x^5)^(3/2).
D-finite with recurrence 2*n*(2*n+1)*a(n) +3*(n-1)*(2*n-3)*a(n-1) +4*(-2*n^2-3*n+4)*a(n-2) +2*(-10*n^2+n+27)*a(n-3) +2*(-4*n^2+11*n+27)*a(n-4) +(-2*n^2-27*n-27)*a(n-5) +2*(-4*n^2+7*n+18)*a(n-6) +3*(2*n+3)*(n-1)*a(n-7)=0. - R. J. Mathar, Oct 17 2024

A376721 Expansion of 1/sqrt((1 - x^3 - x^4)^2 - 4*x^7).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 4, 1, 1, 9, 9, 2, 16, 36, 17, 26, 100, 101, 61, 226, 401, 274, 477, 1227, 1289, 1225, 3186, 4982, 4432, 7841, 16040, 17902, 21457, 45517, 66610, 71327, 123444, 219825, 261945, 354095, 660573, 938598, 1138806, 1909676, 3125553
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/sqrt((1-x^3-x^4)^2-4*x^7))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(k, n-3*k)^2);

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k)^2.

A376722 Expansion of 1/sqrt((1 - x^4 - x^5)^2 - 4*x^9).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 1, 4, 1, 0, 1, 9, 9, 1, 1, 16, 36, 16, 2, 25, 100, 100, 26, 37, 225, 400, 226, 85, 442, 1225, 1226, 505, 833, 3137, 4901, 3217, 2080, 7120, 15878, 15976, 9081, 15696, 44182, 63626, 47125, 41625, 110926, 213688, 217801, 157300, 272251, 630458
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=60, x='x+O('x^N)); Vec(1/sqrt((1-x^4-x^5)^2-4*x^9))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)^2);

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k)^2.

A377146 a(n) = Sum_{k=0..floor(n/2)} binomial(k+2,2) * binomial(k,n-2*k)^2.

Original entry on oeis.org

1, 0, 3, 3, 6, 24, 16, 90, 105, 250, 561, 765, 2143, 3108, 6861, 12985, 22221, 47988, 79463, 161451, 293610, 535836, 1042188, 1835898, 3534766, 6399198, 11805756, 22021232, 39718497, 74193924, 134489713, 247165839, 453235266, 822748406, 1512078192, 2741606052
Offset: 0

Views

Author

Seiichi Manyama, Oct 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(k+2, 2)*binomial(k, n-2*k)^2);
    
  • PARI
    a089627(n, k) = n!/((n-2*k)!*k!^2);
    my(N=2, M=40, x='x+O('x^M), X=1-x^2-x^3, Y=5); Vec(sum(k=0, N\2, a089627(N, k)*X^(N-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1/2))

Formula

G.f.: ((1-x^2-x^3)^2 + 2*x^5) / ((1-x^2-x^3)^2 - 4*x^5)^(5/2).
Showing 1-5 of 5 results.