A298640 Number of compositions (ordered partitions) of n^2 into squares > 1.
1, 0, 1, 1, 2, 8, 12, 129, 874, 9630, 167001, 3043147, 72844510, 2423789655, 106665874384, 6156805673648, 470151743582651, 47558937432498729, 6363358599941131580, 1126147544855148769425, 263646401550138303553708, 81649922556593759124887197
Offset: 0
Keywords
Examples
a(5) = 8 because we have [25], [16, 9], [9, 16], [9, 4, 4, 4, 4], [4, 9, 4, 4, 4], [4, 4, 9, 4, 4], [4, 4, 4, 9, 4] and [4, 4, 4, 4, 9].
Links
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j^2), j=2..isqrt(n))) end: a:= n-> b(n^2): seq(a(n), n=0..25); # Alois P. Heinz, Feb 05 2018
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j^2], {j, 2, Floor @ Sqrt[n]}]]; a[n_] := b[n^2]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 21 2018, after Alois P. Heinz *)