cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A298646 a(n) is the sum of the degrees of asymmetry of all Dyck paths of semilength n.

Original entry on oeis.org

0, 0, 4, 18, 88, 360, 1524, 6090, 24784, 98244, 393820, 1556324, 6196656, 24461424, 97079220, 383132250, 1518103840, 5992343940, 23726184372, 93686670220, 370840981680, 1464969055368, 5798679839524, 22917832613988, 90725318348448, 358737952183800
Offset: 1

Views

Author

Emeric Deutsch, Feb 21 2018

Keywords

Comments

The degree of asymmetry of a Dyck path is defined in the following manner: we label the steps of a Dyck path of length 2n, from left to right, by 1,2,..., n-1, n, n, n-1, ..., 2,1. The degree of asymmetry is defined to be the number of pairs of identically labeled steps that are not at the same level. Example: the Dyck path uduudd has degree of asymmetry 2. Indeed, the labels are 123321 and the steps labeled 2 are at different levels and those labeled 3 are also at different levels.
All terms are even.

Examples

			a(3) = 4. Indeed, showing the step levels, the 5 = A000108(3) Dyck paths of semilength 3 are 111111, 122221, 123321, 111221, 122111. The first 3 are symmetric (degree of asymmetry 0) and each of the last 2 has degree of asymmetry 2.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [0$3, 4][n+1], (
          2*(n-1)*(34328*n^3+1024539*n^2-2260739*n-3203910)*n*a(n-1)
          +24*(n-1)*(63276*n^4-396683*n^3+460919*n^2+544393*n-1067970)*
          a(n-2)-32*(34328*n^5+784243*n^4-7831140*n^3+24334466*n^2
          -31463717*n+15037140)*a(n-3)-128*(n-3)*(n-4)*(2*n-7)*(38875*n^2
          -225739*n+246552)*a(n-4))/((n+2)*(n+1)*n*(56039*n^2-121145*n-130144)))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 21 2018
  • Mathematica
    b[x_, y_, v_] := b[x, y, v] = Expand[If[Min[y, v, x - Max[y, v]] < 0, 0, If[x == 0, 1, Function[l, Sum[Sum[If[y == v + (j - i)/2, 1, z] b[x - 1, y + i, v + j], {i, l}], {j, l}]][{-1, 1}]]]];
    g[n_] := g[n] = Sum[b[n, j, j], {j, 0, n}];
    T[n_, k_] := Coefficient[g[n], z, k];
    a[n_] := Sum[k T[n, k], {k, 0, n - 1}];
    Array[a, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A298645 *)

Formula

a(n) = Sum_{k=0..n-1} k*A298645(n,k).
a(n) = (2*(n-1)*(34328*n^3 + 1024539*n^2 - 2260739*n - 3203910)*n*a(n-1) + 24*(n-1)*(63276*n^4 - 396683*n^3 + 460919*n^2 + 544393*n - 1067970)* a(n-2) - 32*(34328*n^5 + 784243*n^4 - 7831140*n^3 + 24334466*n^2 - 31463717*n + 15037140)*a(n-3) - 128*(n-3)*(n-4)*(2*n-7)*(38875*n^2 - 225739*n + 246552)*a(n-4))/((n+2)*(n+1)*n*(56039*n^2 - 121145*n - 130144)) for n>3, a(n) = 0 for n<3, a(3) = 4. - Alois P. Heinz, Feb 28 2018
a(n) ~ 4^n / sqrt(Pi*n) * (1 - 2/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 06 2018