cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298691 G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1)/2, n) * x^n / A(x)^( n*(n-1)/2 ).

Original entry on oeis.org

1, 1, 3, 17, 144, 1647, 24037, 429483, 9088749, 221942779, 6130801041, 188708846991, 6398116247554, 236786117903526, 9495515095867953, 410104221125229354, 18977504682428845671, 936731766873748776822, 49127713187418767376060, 2728178479576867266738579, 159924801506251429348644138, 9868564065320443974954599471
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 144*x^4 + 1647*x^5 + 24037*x^6 + 429483*x^7 + 9088749*x^8 + 221942779*x^9 + 6130801041*x^10 + 188708846991*x^11 + 6398116247554*x^12 + 236786117903526*x^13 + 9495515095867953*x^14 + 410104221125229354*x^15 + ...
such that
A(x) = 1 + C(1,1)*x + C(3,2)*x^2/A(x) + C(6,3)*x^3/A(x)^3 + C(10,4)*x^4/A(x)^6 + C(15,5)*x^5/A(x)^10 + C(21,6)*x^6/A(x)^15 + C(28,7)*x^7/A(x)^21 + ...
more explicitly,
A(x) = 1 + x + 3*x^2/A(x) + 20*x^3/A(x)^3 + 210*x^4/A(x)^6 + 3003*x^5/A(x)^10 + 54264*x^6/A(x)^15 + 1184040*x^7/A(x)^21 + 30260340*x^8/A(x)^28 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = Vec(sum(m=0,#A,binomial(m*(m+1)/2,m) * x^m/Ser(A)^(m*(m-1)/2) ))); A[n+1]}
    for(n=0,30,print1(a(n),", "))

A298690 G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1)/2, n) * x^n / A(x)^( n*(n+1)/2 ).

Original entry on oeis.org

1, 1, 2, 10, 83, 971, 14679, 271065, 5887674, 146573343, 4106195739, 127709962780, 4364136955874, 162503129082497, 6548680061635319, 283973223632787150, 13185195626147207058, 652695122347799336199, 34316223642036784123819, 1909798106976656110119169, 112165977515060359849066878, 6933265352057611483132200642
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 83*x^4 + 971*x^5 + 14679*x^6 + 271065*x^7 + 5887674*x^8 + 146573343*x^9 + 4106195739*x^10 + 127709962780*x^11 + 4364136955874*x^12 + 162503129082497*x^13 + 6548680061635319*x^14 + 283973223632787150*x^15 + ...
such that
A(x) = 1 + C(1,1)*x/A(x) + C(3,2)*x^2/A(x)^3 + C(6,3)*x^3/A(x)^6 + C(10,4)*x^4/A(x)^10 + C(15,5)*x^5/A(x)^15 + C(21,6)*x^6/A(x)^21 + C(28,7)*x^7/A(x)^28 + ...
more explicitly,
A(x) = 1 + x/A(x) + 3*x^2/A(x)^3 + 20*x^3/A(x)^6 + 210*x^4/A(x)^10 + 3003*x^5/A(x)^15 + 54264*x^6/A(x)^21 + 1184040*x^7/A(x)^28 + 30260340*x^8/A(x)^36 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = Vec(sum(m=0,#A,binomial(m*(m+1)/2,m) * x^m/Ser(A)^(m*(m+1)/2) ))); G=Ser(A); A[n+1]}
    for(n=0,30,print1(a(n),", "))
Showing 1-2 of 2 results.