cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A298689 G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n^2, n) * x^n / A(x)^( n^2 ).

Original entry on oeis.org

1, 1, 5, 56, 957, 22312, 666666, 24367474, 1051351629, 52144520972, 2915915251326, 181227240764128, 12382862552065170, 922234506009645794, 74345308066436693828, 6449466281781165675666, 599083515375854753327365, 59328642583049975996828036, 6240245388930730524658068558, 694754212357547941002786433000, 81628078642468462576697539116234
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2018

Keywords

Comments

Compare to: Sum_{n>=0} C(m*n,n) * x^n / (1+x)^(m*n) = (1+x)/(1 - (m-1)*x) holds for fixed m.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 56*x^3 + 957*x^4 + 22312*x^5 + 666666*x^6 + 24367474*x^7 + 1051351629*x^8 + 52144520972*x^9 + 2915915251326*x^10 + 181227240764128*x^11 + 12382862552065170*x^12 + ...
such that
A(x) = 1 + C(1,1)*x/A(x) + C(4,2)*x^2/A(x)^4 + C(9,3)*x^3/A(x)^9 + C(16,4)*x^4/A(x)^16 + C(25,5)*x^5/A(x)^25 + C(36,6)*x^6/A(x)^36 + C(49,7)*x^7/A(x)^49 + ...
more explicitly,
A(x) = 1 + x/A(x) + 6*x^2/A(x)^4 + 84*x^3/A(x)^9 + 1820*x^4/A(x)^16 + 53130*x^5/A(x)^25 + 1947792*x^6/A(x)^36 + 85900584*x^7/A(x)^49 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = Vec(sum(m=0,#A,binomial(m^2,m) * x^m/Ser(A)^(m^2) ))); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

a(2^k) is odd for k>=0, and a(n) is even elsewhere except at n=0 (conjecture).

A298691 G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1)/2, n) * x^n / A(x)^( n*(n-1)/2 ).

Original entry on oeis.org

1, 1, 3, 17, 144, 1647, 24037, 429483, 9088749, 221942779, 6130801041, 188708846991, 6398116247554, 236786117903526, 9495515095867953, 410104221125229354, 18977504682428845671, 936731766873748776822, 49127713187418767376060, 2728178479576867266738579, 159924801506251429348644138, 9868564065320443974954599471
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 144*x^4 + 1647*x^5 + 24037*x^6 + 429483*x^7 + 9088749*x^8 + 221942779*x^9 + 6130801041*x^10 + 188708846991*x^11 + 6398116247554*x^12 + 236786117903526*x^13 + 9495515095867953*x^14 + 410104221125229354*x^15 + ...
such that
A(x) = 1 + C(1,1)*x + C(3,2)*x^2/A(x) + C(6,3)*x^3/A(x)^3 + C(10,4)*x^4/A(x)^6 + C(15,5)*x^5/A(x)^10 + C(21,6)*x^6/A(x)^15 + C(28,7)*x^7/A(x)^21 + ...
more explicitly,
A(x) = 1 + x + 3*x^2/A(x) + 20*x^3/A(x)^3 + 210*x^4/A(x)^6 + 3003*x^5/A(x)^10 + 54264*x^6/A(x)^15 + 1184040*x^7/A(x)^21 + 30260340*x^8/A(x)^28 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = Vec(sum(m=0,#A,binomial(m*(m+1)/2,m) * x^m/Ser(A)^(m*(m-1)/2) ))); A[n+1]}
    for(n=0,30,print1(a(n),", "))
Showing 1-2 of 2 results.