A298732 Number of compositions (ordered partitions) of n into parts > 1 such that no two adjacent parts are equal (Carlitz compositions).
1, 0, 1, 1, 1, 3, 3, 6, 7, 14, 18, 30, 45, 66, 107, 157, 245, 369, 569, 862, 1325, 2020, 3078, 4717, 7183, 10991, 16769, 25626, 39117, 59763, 91264, 139362, 212893, 325060, 496525, 758258, 1158079, 1768634, 2701162, 4125320, 6300303, 9622247, 14695253, 22443451, 34276405, 52348435
Offset: 0
Keywords
Examples
a(7) = 6 because we have [7], [5, 2], [4, 3], [3, 4], [2, 5] and [2, 3, 2].
Links
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(j=i, 0, b(n-j, `if`(j<=n-j, j, 0))), j=2..n)) end: a:= n-> b(n, 0): seq(a(n), n=0..50); # Alois P. Heinz, Jan 25 2018
-
Mathematica
nmax = 45; CoefficientList[Series[1/(1 - Sum[x^k/(1 + x^k), {k, 2, nmax}]), {x, 0, nmax}], x]
Formula
G.f.: 1/(1 - Sum_{k>=2} x^k/(1 + x^k)).